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Advances in single-cell sequencing and CRISPR technologies1

have enabled detailed case-control comparisons and experimen-2

tal perturbations at single-cell resolution. However, uncover-3

ing causal relationships in observational genomic data remains4

challenging due to selection bias and inadequate adjustment for5

unmeasured confounders, particularly in heterogeneous datasets.6

To address these challenges, we introduce causarray, a doubly7

robust causal inference framework for analyzing array-based8

genomic data at both bulk-cell and single-cell levels. causarray9

integrates a generalized confounder adjustment method to ac-10

count for unmeasured confounders and employs semiparamet-11

ric inference with flexible machine learning techniques to en-12

sure robust statistical estimation of treatment effects. Bench-13

marking results show that causarray robustly separates treat-14

ment effects from confounders while preserving biological sig-15

nals across diverse settings. We also apply causarray to two16

single-cell genomic studies: (1) an in vivo Perturb-seq study of17

autism risk genes in developing mouse brains and (2) a case-18

control study of Alzheimer’s disease using three human brain19

transcriptomic datasets. In these applications, causarray iden-20

tifies clustered causal effects of multiple autism risk genes and21

consistent causally affected genes across Alzheimer’s disease datasets,22

uncovering biologically relevant pathways directly linked to neu-23

ronal development and synaptic functions that are critical for24

understanding disease pathology.25

Keywords: causal inference, confounder adjustment, counterfactual, double26

robustness, differential expression analysis27

Introduction28

The advent of genomic research has transformed our under-29

standing of biological processes and disease mechanisms. Ad-30

vances in single-cell RNA sequencing (scRNA-seq) have driven31

this rapid progress, offering unprecedented insights into gene32

expression patterns at the cellular level (1). The high reso-33

lution provided by scRNA-seq data is essential to elucidate34

cellular heterogeneity and its implications for health and dis-35

ease (2–4). However, fully harnessing the potential of these36

data requires robust analytical frameworks capable of mov-37

ing beyond association to unravel complex causal relation-38

ships at single-cell resolution (5–7). The fundamental dif-39

ference between association and causation is that associa-40

tion assesses correlations between treatments and outcomes,41

whereas causal inference aims to quantify the effect of a treat-42

ment on an outcome. A popular framework for causal infer-43

ence is the potential outcomes framework, which estimates44

what would have happened if a different treatment had been45

assigned, the counterfactual (7, 8). To understand the in- 46

ner workings and mechanisms of biological processes and 47

diseases for the purpose of treatments, precision medicine, 48

genomic medicine and more, causal inferences will be re- 49

quired (9, 10). 50

One of the primary challenges in leveraging scRNA-seq 51

data for causal inference is its inherent hierarchical organi- 52

zation and heterogeneity (6, 7, 11). Cells derived from the 53

same individual are not independent observations; they share 54

biological factors, such as correlated variability and techni- 55

cal factors, including batch effects introduced during stor- 56

age and sequencing. These dependencies violate the assump- 57

tion of independent and identically distributed (i.i.d.) sam- 58

ples, complicating statistical analyses and rendering tradi- 59

tional methods inadequate for handling heterogeneous data 60

with unwanted variations (12, 13). Furthermore, most ge- 61

nomic studies are observational in nature. Unlike randomized 62

controlled trials, observational studies lack complete knowl- 63

edge of the disease or treatment assignment mechanism, lead- 64

ing to potential biases in counterfactual estimation. 65

CRISPR perturbation experiments, a more recent but rapidly 66

expanding area, offer a new set of challenging analysis sce- 67

narios (14–16). For this experimental setting, perturbed cells 68

are contrasted with cells that receive a non-targeting pertur- 69

bation. While there is some randomness in the treatment as- 70

signment, it is not entirely random: continuous unmeasured 71

confounders such as variability in cell size or differential drug 72

exposure can result in biased causal estimates. Additionally, 73

when such experiments are performed in vivo, the possibility 74

of confounding increases (17), further justifying the need for 75

robust causal inference analysis. 76

Existing methods for causal inference, such as CoCoA-diff 77

(6) and CINEMA-OT (11), rely on simple matching tech- 78

niques that assume the causal structure is transferable be- 79

tween treatment and control groups. However, this assump- 80

tion breaks down when covariate distributions differ signif- 81

icantly across groups, leading to biased estimates. More- 82

over, even after controlling for observed confounders, un- 83

measured confounders can undermine the validity of causal 84

conclusions (18, 19). Other methods like surrogate variable 85

analysis (SVA) (20) and RUV (13) aim to address confound- 86

ing and unwanted variation via linear models that assume ad- 87

ditive relationships between covariates and outcomes. While 88

effective for certain bulk RNA-seq datasets, these approaches 89

often fail to capture the sparsity, zero inflation, and overdis- 90
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persion inherent in single-cell genomic data (18, 21). Tack-91

ling these challenges requires integrating robust confounder92

adjustment with flexible modeling techniques to ensure valid93

causal inference in complex genomic data.94

In response to these challenges, we introduce a new frame-95

work for applying causal inference in genomic studies. Our96

approach leverages generalized factor models tailored to count97

data to account for unmeasured confounders, ensuring robust98

adjustment for unmeasured confounders while preserving bi-99

ological signals. It further relies on the potential outcomes100

framework and employs a doubly robust estimation proce-101

dure, which combines outcome and propensity score models102

to ensure reliable statistical inference even if one model is103

misspecified (22, 23). This framework effectively addresses104

biases introduced by both observed and unobserved confounders,105

making it particularly well-suited for analyzing complex ge-106

nomic data at both bulk and single-cell levels (Fig. 1a). By107

integrating advanced statistical and machine learning tech-108

niques with a causal inference framework, our method en-109

ables a range of downstream analyses, including accurate es-110

timation of counterfactual distributions, causal gene detec-111

tion, and conditional treatment effect analysis. This approach112

not only improves the interpretability and precision of ge-113

nomic analyses but also uncovers critical insights into gene114

expression dynamics under disease or perturbation conditions,115

advancing our understanding of underlying biological mech-116

anisms.117

We demonstrate the effectiveness of causarray through bench-118

marking on several simulated datasets, comparing its per-119

formance with existing single-cell-level perturbation analysis120

methods and pseudo-bulk-level differential expression (DE)121

analysis methods. Next, we apply causarray to two single-122

cell genomic studies: a Perturb-seq study investigating autism123

spectrum disorder/neurodevelopmental disorder (ASD/ND)124

genes in developing mouse brains and a case-control study of125

Alzheimer’s disease using human brain transcriptomic datasets.126

For the Alzheimer’s disease analysis, we validate our findings127

across three independent datasets, showcasing the robustness128

and reproducibility of causarray in identifying causally af-129

fected genes and uncovering biologically meaningful path-130

ways. These applications highlight the potential of causar-131

ray to advance our understanding of complex disease mecha-132

nisms through rigorous causal inference.133

Results134

Doubly-robust counterfactual imputation and inference135

Our objective is to determine whether a gene is causally af-136

fected by a “treatment” variable after controlling for other137

technical and biological covariates, which may affect the treat-138

ment and outcome variables. Here, we use the term treatment139

generally; in the narrow sense, it can mean genetic and/or140

chemical perturbations (17, 24), such as CRISPR-CAS9, and,141

more broadly, it can mean the phenotype of a disease (6). We142

acknowledge that while many differentially expressed genes143

can be considered a result of disease status, for most late-144

onset disorders, a smaller fraction of genes could have ini-145

tiated disease phenotypes. Our method aims to determine146

the direct effects of treatments on modulated gene expression 147

outcomes. 148

In observational data, the response variable can be con- 149

founded by measured and unmeasured biological and tech- 150

nical covariates, making it difficult to separate the treatment 151

effect from other unknown covariates. As a consequence, it 152

is challenging to draw causal inferences; even tests of as- 153

sociation may lead to an excess of false discoveries and/or 154

low power. Fortunately, the potential outcomes framework 155

(22, 23) formulates general causal problems in a way that al- 156

lows for the treatment effect to be separated from the effects 157

of other variables. However, even this framework is chal- 158

lenged by unmeasured covariates. Before introducing our 159

method for estimating unmeasured confounders, we first out- 160

line the general potential outcomes framework. 161

Consider a study in which Y is the response variable and 162

A is the binary treatment variable for an observation. In the 163

potential outcomes framework, Y (a) is the outcome that we 164

would have observed if we set the treatment to A= a. Natu- 165

rally, we can only observe one of the two potential outcomes 166

for each observation, so 167

Y = 1{A= 1}Y (1)+1{A= 0}Y (0), 168

In the context of a case-control study of a disease, this would 169

answer the question: What is the expected difference in gene 170

expression if an individual had the disease (case, A= 1) ver- 171

sus if they did not (control, A= 0)? 172

Doubly robust methods provide a powerful tool for es- 173

timating potential outcomes in observational studies where 174

randomization is not possible (22, 23). Specifically, we esti- 175

mate two key quantities: (1) µa(X), the mean response of the 176

outcome variable conditional on treatment A= a and covari- 177

ates X = x, and (2) πa(X), the propensity score, which is 178

defined as the probability of receiving treatment A= a given 179

covariates X , i.e., πa(X) = P(A= a |X). Using these esti- 180

mates, we compute potential outcomes as 181

Ŷ (a) = 1{A= a}
π̂a(X) (Y − µ̂a(X))+ µ̂a(X). 182

The doubly robust estimator’s name comes from the fact that 183

it provides a consistent estimate as long as either the out- 184

come model, µa(X), or the propensity score model, πa(X), 185

is correctly specified. Given this estimate, we can easily per- 186

form downstream inference tasks such as computing log fold 187

change (LFC) (Methods), and testing for causal effects on 188

gene expressions (Fig. 1a). An advantage of this approach 189

is that counterfactual imputation denoises/balances gene ex- 190

pression under two different conditions. Additionally, hav- 191

ing access to estimated potential outcomes facilitates down- 192

stream analyses such as estimating causal effects conditional 193

on measured confounders like age. 194

A key step in these types of analyses is estimating unmea- 195

sured confounders. To adjust for confounding, factor mod- 196

els were popularized in surrogate variable analysis literature 197

and have since been widely adopted in bulk gene expression 198

studies (20). Recently, we extended this approach to single- 199

cell RNA-seq data using generalized linear models that better 200
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Simulation study demonstrates the advantages of causarray
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Fig. 1. Overview of the proposed causarray method. a, Illustration of the data generation process for pseudo-bulk and single-cell data. b, The gene expression matrix,
Y , is linked to the treatment, A, measured covariates, X, and confounding variables, U , via a GLM model. The cell-wise size factor, s, and gene-wise dispersion parameter,
φ, are estimated from the data, and the unmeasured confounder U is estimated by Û through the augmented GCATE method. c, Generalized linear models and flexible
machine learning methods including random forest and neural network can be applied for outcome modeling (E[Y | A = a,X,Û ] = µ̂a(X,Û)) and propensity modeling

(P(A = a | X,U) = π̂a(X,Û)) The estimated outcome and propensity score functions give rise to the estimated potential outcomes for each cell and each gene. d,
Downstream analysis includes contrasting the estimated counterfactual distributions, performing causal inference, and estimating the conditional average treatment effects.

accommodate pseudobulk and single-cell outcome variables201

(18). Using this generalized factor analysis approach, we es-202

timate unmeasured confounders U alongside potential out-203

comes (Fig. 1b-c), enabling direct estimation of downstream204

quantities such as LFC (Fig. 1d).205

Simulation study demonstrates the advantages of causarray 206

We evaluate the performance of causarray in two simulated 207

settings (Appendix S3). In the first setting, we generate sim- 208

ulated pseudo-bulk data, while in the second, we generate 209

simulated single-cell data using the Splatter simulator (25), 210

which explicitly models the hierarchical Gamma-Poisson pro- 211

cesses underlying scRNA-seq data and captures multi-faceted 212
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Fig. 2. Benchmarking of causarray against other methods for single-cell differential expression testing on synthetic expression data with unmeasured con-
founders. a, The analysis pipeline produces a confounder adjustment and a statistic for DE testing. We illustrate two types of criteria used for benchmarking confounder
adjustment and DE methods in simulation for bulk simulations (b-e) and single-cell simulations (Fig. S1). b, Performance comparison of causarray and other methods with a
well-specified number of latent factors (r = 4). Bar plots show median ARI and ASW scores for confounder estimation, while box plots display FPR and TPR for biological
signal preservation. The top and bottom hinges represent the top and bottom quartiles, and whiskers extend from the hinge to the largest or smallest value no further than
1.5 times the interquartile range from the hinge. The center indicates the median. c, Robustness analysis of causarray, RUV-III-NB, and RUV under varying numbers of latent
factors (r = 2,4,6). Bar plots show ARI and ASW scores for confounder estimation, while box plots display FPR and TPR for DE testing. d-e, causarray disentangles the
treatment effects and unmeasured confounding effects in the response and confounder spaces. UMAP projection of (d) expression data Y colored by the values of treatment
A (purple for control A = 0 and yellow for treated A = 1) and unmeasured continuous confounder U ; and (e) estimated potential outcome under control Y (0) colored by
the values of treatment A and continuous confounder U .

variability. Each dataset consists of 100-300 cells, approxi-213

mately 2,000 genes, 1-2 covariates, and 4 unmeasured con-214

founders.215

To benchmark causarray, we compare it with several ex-216

isting methods designed for differential expression (DE) test-217

ing, both with and without confounder adjustment (Fig. 2a). 218

For methods that do not account for unmeasured confounders, 219

we include the Wilcoxon rank-sum test and DESeq2 (26). In 220

the presence of measured covariates, both regress the gene 221

expression counts with respect to the covariates using the 222
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Simulation study demonstrates the advantages of causarray
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Fig. 3. Statistical test results of the effects of CRISPR perturbation on gene expression in excitatory neuron data. a, Number of significant genes detected under all
perturbations using three different methods. The detection threshold for significant genes is FDR< 0.1 for all methods. b-c, Heatmaps of GO terms enriched (adjusted P
value < 0.05, q < 0.2) in discoveries from causarray and RUV, respectively, where the common GO terms are highlighted in blue. Only the top 20 GO terms that have the
most occurrences in all perturbations are displayed. d-e, Barplots of GO terms enriched in discoveries under Satb2 perturbation from causarray and RUV, respectively.

Poisson or negative binomial generalized linear model, re-223

spectively. The input to the Wilcoxon rank sum test is the de-224

viance residuals. For confounder-adjusted methods, we con-225

sider CoCoA-diff (6), CINEMA-OT (11), CINEMA-OT-W226

(11), RUV (12), and RUV-III-NB (13), where recommended227

DE test methods are subsequently applied with estimated con-228

founders. A short summary of each of these benchmarking229

comparison methods can be found in Methods.230

To assess the performance of unmeasured confounder ad-231

justment procedures, we use two metrics: adjusted Rand in-232

dex (ARI) and average silhouette width (ASW). More specif-233

ically, we use ARI to quantify the alignment between esti-234

mated and true unmeasured confounders and ASW to eval- 235

uate cell type separation in the control response space. A 236

higher ARI value indicates better coherence and a higher ASW 237

value reflects better preservation of biological signals after 238

removing confounding effects. Additionally, to assess the 239

performance of DE testing, we use two metrics: false pos- 240

itive rate (FPR) and true positive rate (TPR) (Methods). 241

We first evaluate how sample size and confounding lev- 242

els influence the performance of DE testing across methods. 243

Among all tested approaches, only causarray, RUV, Wilcoxon, 244

and DESeq2 effectively control FPR across all settings (Fig. 2b 245

and Fig. S1ab). causarray maintains FPR close to the nomi- 246
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Fig. 4. Comparison of DE genes discovered by causarray and RUV on excitatory neurons for Alzheimer’s disease. a, The ratio of false discoveries to all 15586 genes
of DE test results with permuted disease labels on the ROSMAP-AD dataset. Three methods, causarray with FDX control, causarray with FDR control, and RUV with FDR
control, are compared. b, The similarity of estimated effect sizes on SEA-AD MTG and PFC datasets. The slope is estimated from linear regression of effect sizes on the PFC
dataset against those on the MTG dataset. c, DE genes by causarray and RUV over 15586 genes (adjusted P value < 0.1). d, Venn diagram of associated GO terms from
causarray and RUV (adjusted P value < 0.05, q < 0.2). e, Considering only the top 50 positively regulated and the top 50 negatively regulated DE genes from causarray
and RUV, we map them to the top 5 biological processes (the green nodes).

nal level of 0.1 across all sample sizes and confounding lev-247

els, while RUV-III-NB, CINEMA-OT-W, CINEMA-OT, and248

CoCoA-diff exhibit inflated FPRs exceeding 0.5 in most cases.249

Notably, causarray achieves the highest TPRs across all sce-250

narios, with values ranging from approximately 0.8 to 0.9 de-251

pending on sample sizes and confounding levels (Fig. 2b and252

Fig. S1ab). This is significantly higher than RUV-III-NB and253

CoCoA-diff, which achieve TPRs below 0.5 in most settings,254

particularly for smaller sample sizes or higher confounding255

levels. These results highlight causarray’s ability to balance256

sensitivity and specificity effectively. 257

In terms of unmeasured confounder adjustment, causarray, 258

RUV-III-NB, and CoCoA-diff achieve both ARI and ASW 259

scores consistently above 0.7 across all sample sizes in both 260

bulk and single-cell data (Fig. 2b, Fig. S1ab), outperform- 261

ing RUV, CINEMA-OT-W, CINEMA-OT, which show ARI 262

scores below 0.5 in most cases. Furthermore, causarray effec- 263

tively disentangles treatment effects from unmeasured con- 264

founding effects. In the response space (Fig. 2d), treatment 265

groups are distinctly separated with minimal overlap, while 266
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causarray applied to an in vivo Perturb-seq study reveals causal effects of ASD/ND genes

a

b

Fig. 5. Results of DE analysis of 10 selected genes by causarray. The top 5 up-regulated and top 5 down-regulated genes in estimated LFCs (adjusted P value< 0.05)
are visualized. a, Estimated counterfactual distributions. The values are shown in the log scale after adding one pseudo-count. b, Estimated log-fold change of treatment
effects, conditional on age for selected genes. The center lines represent the mean of the locally estimated scatter plot smoothing (LOESS) regression, and the shaded area
represents a 95% confidence interval at each value of age.

variations within groups reflect unmeasured confounders. In267

the confounder space (Fig. 2e), causarray produces a uniform268

mixing of treatment groups while accurately reconstructing269

continuous confounder values.270

Finally, we assess the robustness of causarray, RUV-III-271

NB, and RUV under varying numbers of latent factors (Fig. 2c272

and Fig. S1c). Among these methods, only causarray consis-273

tently controls FPR at nominal levels of 0.1 regardless of the274

number of factors or sample size. In contrast, RUV-III-NB275

exhibits inflated median FPRs exceeding 0.2 when more fac-276

tors are included (e.g., r = 6). While RUV-III-NB performs277

well in terms of ARI (above 0.8) and ASW (above 0.7), its278

DE testing performance is inferior to RUV due to poor FPR279

control under certain conditions. Based on these findings, we280

proceed with causarray and RUV for real data analysis.281

causarray applied to an in vivo Perturb-seq study reveals282

causal effects of ASD/ND genes283

An integrative analysis of multiple single perturbations. Autism284

spectrum disorders and neurodevelopmental delay (ASD/ND)285

represent a complex group of conditions that have been ex- 286

tensively studied using genetic approaches. To investigate the 287

underlying mechanisms of these disorders, researchers have 288

employed scalable genetic screening with CRISPR-Cas9 tech- 289

nology (17). Frameshift mutations were introduced in the 290

developing mouse neocortex in utero, followed by single- 291

cell transcriptomic analysis of perturbed cells from the early 292

postnatal brain (17). These in vivo single-cell Perturb-seq 293

data allow for the investigation of causal effects of a panel of 294

ASD/ND risk genes. We analyze the transcriptome of cortical 295

projection neurons (excitatory neurons) perturbed by one risk 296

gene or a non-targeting control perturbation, which serves as 297

a negative control. 298

Unmeasured confounders, such as batch effects and un- 299

wanted variation, are likely present in this dataset due to the 300

batch design being highly correlated with perturbation con- 301

ditions (Fig. S2ab). Additionally, the heterogeneity of single 302

cells assessed in vivo introduces further complexity. These 303

confounding factors may reduce statistical power for gene- 304
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level differential expression (DE) tests, as noted in the orig-305

inal study (17), which instead focused on gene module-level306

effects. To address this limitation, we apply causarray to in-307

corporate unmeasured confounder adjustment and conduct308

a more granular analysis at the single-gene level. This ap-309

proach enables us to uncover nuanced genetic interactions310

and causal effects that may provide deeper insights into the311

etiology of ASD/ND.312

Functional analysis. Gene module-level analyses have been313

shown to provide greater statistical power for detecting bi-314

ologically meaningful perturbation effects when fewer cells315

are available (17). The original study adopted this approach316

but relied on a linear model rather than a negative binomial317

model, potentially limiting its ability to detect broader sig-318

nals at the individual gene level. Here, we compare causarray319

with RUV and DESeq2 (without confounder adjustment) to320

identify significant genes and enriched gene ontology (GO)321

terms associated with various perturbations.322

In terms of significant gene detection, causarray identi-323

fies a comparable number of significant genes to RUV across324

most perturbations, while DESeq2 consistently detects fewer325

significant genes (Fig. 3a). The variation in significant de-326

tections across different perturbed genes suggests distinct bi-327

ological impacts of each knockout. Functional analysis fo-328

cuses on enriched GO terms on the DE genes under each per-329

turbation condition where discrepancies arise between causar-330

ray and other methods. Genes identified by causarray are331

enriched for biologically relevant GO terms with clear clus-332

tering patterns (Fig. 3b-c, Fig. S2c). In contrast, RUV shows333

less distinct clustering and enrichment patterns.334

Notably, while RUV identifies GO terms related to ribo-335

some processes previously implicated in ASD studies (27),336

these findings remain controversial. Some argue that dysreg-337

ulation in translation processes and ribosomal proteins may338

reflect secondary changes triggered by expression alterations339

in synaptic genes rather than direct causal effects (28). In340

contrast, GO terms identified by causarray align more closely341

with the expected causal effects of ASD/ND gene perturba-342

tions (29, 30).343

To further validate these findings, we examine the pertur-344

bation condition for Satb2, which yields the largest num-345

ber of significant genes identified by both methods (adjusted346

P value < 0.1). Satb2 is known to play critical roles in347

neuronal development, synaptic function, and cognitive pro-348

cesses (31, 32). Using causarray, we detect enrichment for349

GO terms directly related to neuronal function and develop-350

ment, such as “regulation of neuron projection development,”351

“regulation of synapse structure or activity,” and “synapse352

organization” (Fig. 3d). These findings are consistent with353

Satb2’s established roles in neuronal development and synap-354

tic plasticity (33, 34). On the other hand, RUV identifies en-355

richment for terms related to mitochondrial function and en-356

ergy metabolism, such as “mitochondrial electron transport,”357

“cellular respiration,” and “ATP synthesis” (Fig. 3e). While358

these processes are important for general cellular function,359

they are less directly relevant to Satb2’s primary biological360

roles.361

Overall, this analysis demonstrates that causarray provides 362

greater specificity in detecting biologically meaningful causal 363

effects of gene perturbations. Its ability to disentangle con- 364

founding influences while preserving relevant biological sig- 365

nals highlights its effectiveness in analyzing complex genomic 366

datasets. 367

causarray reveals causally affected genes of Alzheimer’s dis- 368

ease in a case-control study 369

An integrative analysis of excitatory neurons. We analyze 370

three Alzheimer’s disease (AD) single-nucleus RNA sequenc- 371

ing (snRNA-seq) datasets: a transcriptomic atlas from the 372

Religious Orders Study and Memory and Aging Project (ROSMAP)373

(35) and two datasets from the Seattle Alzheimer’s Disease 374

Brain Cell Atlas (SEA-AD) consortium (36), which include 375

samples from the middle temporal gyrus (MTG) and pre- 376

frontal cortex (PFC). Our objective is to compare the perfor- 377

mance of causarray and RUV in pseudo-bulk DE tests of AD 378

in excitatory neurons. 379

To evaluate the validity, we perform a permutation experi- 380

ment on the ROSMAP-AD dataset by permuting phenotypic 381

labels. Ideally, no significant discoveries should be made un- 382

der this null scenario. However, RUV produces a large num- 383

ber of false discoveries, with its performance deteriorating as 384

the number of latent factors increases. In contrast, causarray 385

effectively controls the false discovery rate (FDR), producing 386

minimal false positives (Fig. 4a). Additionally, we assess co- 387

herence across datasets by examining effect sizes in SEA-AD 388

(MTG) and SEA-AD (PFC). Effect sizes estimated by causar- 389

ray exhibit higher consistency across varying q-value cutoffs 390

compared to RUV (Fig. 4b, Fig. S3b). When inspecting DE 391

genes across all three AD datasets, causarray identifies more 392

consistent discoveries than RUV (Fig. 4c), highlighting its 393

robustness in detecting causally affected genes. 394

Functional analysis. We further compare functional enrich- 395

ment results between causarray and RUV using gene ontol- 396

ogy (GO) terms associated with DE genes. Across the three 397

datasets, causarray identifies 165 common GO terms, signif- 398

icantly more than the 60 identified by RUV (Fig. 4d). Both 399

methods detect GO terms relevant to neuronal development 400

and synaptic functions, which are critical for understanding 401

AD pathology. However, causarray shows distinct enrich- 402

ment in categories such as “positive regulation of cell devel- 403

opment” and “negative regulation of cell cycle’, reflecting 404

its increased sensitivity to synaptic and neurotransmission- 405

related processes. In contrast, RUV’s results exhibit more 406

dataset-specific enrichments, such as biosynthetic processes 407

in SEA-AD (PFC), apoptotic processes in SEA-AD (MTG), 408

and catabolic processes in ROSMAP-AD (Fig. S3c). These 409

findings suggest that causarray captures more generalizable 410

biological signals across datasets. 411

Both methods identify overlapping top functional categories 412

related to key biological processes associated with AD pathol- 413

ogy (Fig. S3e). However, causarray associates a larger num- 414

ber of genes with these categories, identifying 3393 DE genes 415

compared to 3187 for RUV (Fig. 4c). Additionally, causarray 416

reveals 165 common GO terms across the three datasets, sig- 417
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causarray reveals causally affected genes of Alzheimer’s disease in a case-control study

nificantly more than the 60 identified by RUV (Fig. 4d). The418

visualization of the discovered networks, as defined as the top419

5 GO terms and associated genes included in the top 100 DE420

gene discoveries, further highlights the enhanced sensitivity421

and comprehensiveness of causarray. Specifically, the causar-422

ray network contains 17 gene nodes and 81 edges, compared423

to 14 gene nodes and 57 edges in the RUV network (Fig. 4e).424

This greater interconnectedness in the larger causarray net-425

work suggests a more intricate and informative representa-426

tion of underlying biological relationships, emphasizing its427

ability to capture broader and more relevant genetic factors428

associated with AD pathology.429

Counterfactual analysis. The counterfactual framework em-430

ployed by causarray enables downstream analyses that di-431

rectly utilize estimated potential outcomes. By examining432

counterfactual distributions for significant genes (Fig. 5a), we433

observe distinct shifts in expression levels between treatment434

(Y (1)) and control (Y (0)) groups. Downregulated genes show435

a shift toward lower expression levels under disease condi-436

tions, while upregulated genes exhibit increased expression.437

Conditional average treatment effects (CATEs) reveal age-438

dependent trends for these genes (Fig. 5b). For example, up-439

regulated genes such as SLC16A6 and RFLNA show stronger440

effects at extreme ends of the age distribution, while others441

like SLC38A2 and BAG6 display nuanced changes across the442

aging spectrum.443

These findings align with prior studies highlighting the444

roles of specific genes in aging-related processes. For in-445

stance, ZFR2, RFLNA, BAG6, and RAD21 have been impli-446

cated in chromatin remodeling, synaptic plasticity, and cellu-447

lar stress responses critical for aging and neurodegeneration448

(37–40). While nonparametric fitted curves exhibit wider un-449

certainty bands, particularly at the boundaries, which can be450

observed here, the significant trends observed for key genes451

highlight their potential relevance in AD pathology. Overall,452

these results demonstrate that causarray provides nuanced in-453

sights into age-dependent gene regulation mechanisms while454

maintaining robust control over confounding influences.455

Discussion456

The rapid growth of high-throughput single-cell technologies457

has created an urgent need for robust causal inference frame-458

works capable of disentangling treatment effects from con-459

founding influences. Existing methods, such as CINEMA-460

OT (11), have advanced the field by separating confounder461

and treatment signals and providing per-cell treatment-effect462

estimates. However, these methods rely on the assumption463

of no unmeasured confounders, which is often violated in464

observational studies and in vivo experiments. Additionally,465

many confounder adjustment methods, such as RUV (12), de-466

pend on linear model assumptions that do not directly model467

count data or provide robust differential expression testing at468

the gene level. Addressing these limitations, causarray intro-469

duces a doubly robust framework that integrates generalized470

confounder adjustment with semiparametric inference to en-471

able reliable and interpretable causal analysis.472

causarray directly models count data using generalized lin- 473

ear models for unmeasured confounder estimation, overcom- 474

ing a key limitation of RUV in DE analysis. Unlike CINEMA- 475

OT (11) and CoCoA-diff (6), which rely on optimal transport 476

or matching techniques, causarray employs a doubly robust 477

framework that combines flexible machine learning models 478

with semiparametric inference. This approach enhances sta- 479

bility and interpretability while enabling valid statistical in- 480

ference of treatment effects. Benchmarking results demon- 481

strate that causarray outperforms existing methods in disen- 482

tangling treatment effects from confounding influences across 483

diverse experimental settings, maintaining superior control 484

over false positive rates while achieving higher true positive 485

rates. 486

In an in vivo Perturb-seq study of ASD/ND genes, causar- 487

ray uncovered gene-level perturbation effects that were missed 488

by prior module-based analyses. It identified biologically rel- 489

evant pathways linked to neuronal development and synaptic 490

functions for multiple autism risk genes. Similarly, in a case- 491

control study of Alzheimer’s disease using three human brain 492

transcriptomic datasets, causarray revealed consistent causal 493

gene expression changes across datasets and highlighted key 494

biological processes such as synaptic signaling and cell de- 495

velopment. These findings underscore the ability of causar- 496

ray to provide biologically meaningful insights across diverse 497

contexts. 498

Despite its strengths, causarray has certain limitations. Its 499

performance depends on the accurate estimation of unmea- 500

sured confounders, which may vary with dataset complexity 501

and experimental design. Furthermore, while causarray pro- 502

vides robust DE testing, its integration with advanced spatial 503

or trajectory analysis frameworks remains unexplored (41, 504

42). Future research could focus on extending causarray to 505

incorporate prior biological knowledge or extrapolate to un- 506

seen perturbation-cell pairs, similar to emerging methods like 507

CPA (43). Such advancements would further enhance its ap- 508

plicability in single-cell causal inference. 509
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Methods510

Counterfactual511

Potential outcomes framework. LetO= (A,W,Y )∈{0,1}×512

RdW ×Rp be a tuple of random vectors, where A is the bi-513

nary treatment variable (e.g., presence or absence of a dis-514

ease or perturbation), W is the vector of covariates (e.g., bi-515

ological or technical factors influencing both treatment and516

outcome), and Y is the observed outcomes, defined as Y =517

AY (1) + (1−A)Y (0), where Y (1) and Y (0) are the poten-518

tial outcomes under treatment and control, respectively.519

The potential outcomes framework assumes that for each520

individual or observation, there exist two potential outcomes:521

one if the individual receives the treatment (Y (1)) and one if522

they do not (Y (0)). However, only one of these outcomes can523

be observed for each individual, depending on whether they524

were treated (A= 1) or not (A= 0). This framework allows525

us to define causal effects in terms of these unobservable po-526

tential outcomes.527

To estimate causal effects, we rely on the following key528

assumptions:529

Assumption 1 (Consistency) The observed response is con-530

sistent such that Y (a) = Y |A= a.531

Assumption 2 (Positivity) The propensity score πa(W ) :=532

P(A= a |W ) ∈ (ε,1− ε) for some ε ∈ (0,1/2).533

Assumption 3 (No unmeasured confounders) A⊥⊥ Y (a) |534

W , for all a ∈ {0,1}.535

Under these assumptions (Assumptions 1–3), the observed536

outcome Y is conditionally independent of the treatment A,537

given the covariates W . This allows us to estimate the ex-538

pected potential outcome for gene j under treatment (a = 1)539

or control (a= 0) as:540

E[Yj(a)] = ψj(W,a) := E[µj(W,a)],541

where µj(W,a) = E[Yj |W,A = a] is a regression function542

that models the relationship between covariates, treatment,543

and outcomes.544

Suppose we have a dataset D = {O1, . . . ,On} consisting545

of i.i.d. samples from the same distribution as O. Let Pn546

denote the empirical measure over D, defined as:547

Pnf(O) = n−1
n∑
i=1

f(Oi),548

for any measurable function f . This represents the sample549

average of a function evaluated on all observations in the550

dataset.551

A naive plug-in estimator for ψj can then be constructed552

by replacing the true regression function µj(W,a) with its553

estimated counterpart µ̂j(W,a) and using sample averages to554

approximate expectations. The resulting estimator is:555

ψ̂PI
j = Pn[µ̂j(W,a)] = n−1

n∑
i=1

µ̂j(Wi,a).556

This plug-in estimator provides an estimate of the expected557

potential outcome by averaging predictions from the estimated558

regression model over all observations in the dataset.559

While Assumptions 1–3 are foundational for causal infer- 560

ence, violations of the no unmeasured confounders assump- 561

tion (Assumption 3) are common in real-world applications 562

(18, 19). For instance, in single-cell transcriptomic studies, 563

technical factors such as batch effects or biological hetero- 564

geneity (e.g., cell size or cell cycle stage) may act as unmea- 565

sured confounders. These unmeasured variables can bias es- 566

timates of causal effects by introducing spurious associations 567

between treatment and outcome. Addressing this limitation 568

motivates the need for methods that explicitly model and ad- 569

just for unmeasured confounders. 570

The probabilistic modeling of confounders. To account for 571

unmeasured confounders, we propose an improved version of 572

the GCATE method (18), which identifies potential unmea- 573

sured confounders under generalized linear models (GLMs). 574

This approach extends traditional confounder adjustment meth- 575

ods by incorporating more flexible nonlinear models that bet- 576

ter capture the unique characteristics of genomic count data, 577

such as zero-inflation (an excess of zero counts) and over- 578

dispersion (greater variability than expected under standard 579

Poisson assumptions). These enhancements allow for more 580

accurate modeling of gene expression data, addressing limi- 581

tations of simpler linear models in high-dimensional genomic 582

analyses. 583

For the ith observation (e.g., a single cell or sample) and 584

the jth gene, we model the adjusted expression µij = Yij/sj , 585

where Yij is the observed expression level, and sj is the size 586

factor for the jth gene. The size factor accounts for differ- 587

ences in sequencing depth or library size across samples, en- 588

suring that comparisons are not biased by technical variabil- 589

ity. We assume that µij follows an exponential family dis- 590

tribution, which is a flexible class of probability distributions 591

commonly used in GLMs. The density of µij is given by: 592

p(µij | θij) = h(µij)exp(µijθij−A(θij)) , 593

where θij is the natural parameter that determines the mean 594

and variance of µij , h(µij) is a known base measure, and 595

A(θij) is the log-partition function, which ensures that the 596

density integrates to 1. 597

In matrix form, we model the natural parameters 598

Θ = (θij)1≤i≤n,1≤j≤p, 599

as a decomposition into two components: 600

Θ = X̃B>+UΓ>. 601

Here, X̃ = [X,A] ∈ Rn×(d+1) combines observed covari- 602

ates X (e.g., biological or technical factors) with treatment 603

indicators A, where n is the number of observations, and d 604

is the dimension of X; B ∈ Rp×(d+1) represents unknown 605

regression coefficients for the effects of covariates and treat- 606

ments on gene expression; U ∈ Rn×r represents latent vari- 607

ables capturing unmeasured confounders, where r is the num- 608

ber of latent factors; and Γ∈Rp×r represents unknown coef- 609

ficients linking unmeasured confounders to gene expression. 610
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Counterfactual

This decomposition assumes that gene expression levels611

are influenced by both observed covariates (X̃) and unmea-612

sured confounders (U ). The term X̃B> captures the effects613

of observed covariates and treatments, while UΓ> captures614

the effects of unmeasured confounders.615

To estimate these unknown quantities (B, U , Γ), we em-616

ploy methods detailed in Appendix S1. This includes tech-617

niques for estimating latent factors (Û ) and extending the618

framework to handle multiple treatments. Once these quan-619

tities are estimated, we treat W = [X,Û ] ∈ Rd+r as the620

complete set of confounding covariates—combining both ob-621

served covariates (X) and estimated unmeasured confounders622

(Û ).623

With this expanded set of covariates, we perform doubly624

robust estimation and inference as described in subsequent625

sections. This approach ensures that treatment effects are es-626

timated while accounting for both observed and unmeasured627

confounding influences, improving robustness and reliability628

in causal inference.629

Doubly robust estimation. Throughout the paper, we consider630

the log fold change (LFC) as the target estimand:631

τj := log(E[Yj(1)]/E[Yj(0)]),632

which quantifies the relative change in expected gene expres-633

sion levels between treatment (A = 1) and control (A = 0)634

conditions for gene j. Extensions to other estimands are pro-635

vided in Appendix S2.636

The doubly robust estimation framework is a widely used637

approach that is agnostic to the underlying data-generating638

process. It provides valid estimation and inference results as639

long as either the conditional mean model (µj) or the propen-640

sity score model (π) is correctly specified. This robustness641

property ensures reliable causal effect estimation even in the642

presence of potential misspecification of one of the models.643

More specifically, a one-step estimator τ̂j of the estimand644

τj admits a linear expansion:645

τ̂j− τj = 1
n

n∑
i=1

ηj(Oi;π,µj)+oP(n−1/2),646

where ηj(Oi;π,µj) is the influence function of τj , which647

quantifies how individual observations contribute to the over-648

all estimate. Here, π(W ) = P(A= a |W ) is the propensity649

score model, and µj(W ,a) = E[Yj |W,A = a] is the out-650

come model for gene j. See Appendix S2 for detailed deriva-651

tions of these functions.652

To estimate the nuisance functions µj’s (outcome models)653

and π (propensity score model), we use flexible statistical654

machine learning methods. Specifically, for outcome mod-655

els µj , we employ generalized linear models (GLMs) with656

a negative binomial likelihood and log link function. This657

choice accounts for over-dispersion in count data while en-658

suring computational efficiency given the high dimensional-659

ity of genomic data. For the propensity score model π, we660

provide two built-in options: (i) logistic regression and (ii)661

random forests. In our experiments, random forests are con- 662

figured with 1,000 trees, a minimum leaf size of 3, and a max- 663

imum tree depth of 11. Extrapolated cross-validation (ECV) 664

(44) is used to select hyperparameters by minimizing the es- 665

timated mean squared error. Users can also supply alternative 666

estimates for these nuisance functions if desired. 667

To perform inference, we first compute the estimated influ- 668

ence function values η̂j(Oi; π̂, µ̂j) and use them to estimate 669

the variance for gene j: 670

σ̂2
j =

√
n

n−1

n∑
i=1

η̂j(Oi; π̂, µ̂j)2. 671

Using these quantities, a t-statistic for gene j can be com- 672

puted as: 673

Tj = τ̂j− τj
σ̂j

. 674

This statistic enables hypothesis testing and confidence inter- 675

val construction for causal effects on gene expression. 676

False discovery rate control. Genomic studies often involve 677

testing thousands of hypotheses simultaneously, making it 678

crucial to control statistical Type-I errors. Two widely rec- 679

ognized error rate metrics are the Family-Wise Error Rate 680

(FWER) and the False Discovery Rate (FDR), each suited 681

to different contexts. Consider p hypothesis tests, let S ⊂ 682

{1, . . . ,p} denote the set of discoveries, and H0 ⊂ {1, . . . ,p} 683

denote the set of true null hypotheses. The false discovery 684

proportion (FDP) is defined as the ratio of false positives to 685

total discoveries: 686

FDP = |S ∩H0|
|S|∨1 . 687

The FWER controls the probability of making at least one 688

false discovery: 689

FWER := P(FDP> 0)≤ α, 690

where α∈ (0,1) is a predefined significance level. This strin- 691

gent control is particularly useful in scenarios where even a 692

single false positive is unacceptable. However, FWER con- 693

trol often leads to reduced statistical power, especially in high- 694

dimensional settings with many hypotheses, potentially over- 695

looking true effects. 696

In contrast, FDR control provides a more balanced ap- 697

proach by controlling the expected proportion of false dis- 698

coveries among all discoveries: 699

FDR := E[FDP]≤ α. 700

This approach enhances power in multiple testing scenarios 701

and has become the standard for differential expression anal- 702

ysis in genomics due to its ability to identify more significant 703

features while maintaining a low proportion of false positives 704

(45). Importantly, FDR controls the expected proportion of 705

false discoveries across repeated experiments but does not 706

guarantee bounds on FDP in any single experiment. This dis- 707

tinction becomes critical in genomic studies where test statis- 708

tics are often highly dependent, leading to variability in FDP 709

across experiments. 710
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To address limitations of standard FDR procedures, such711

as their inability to capture FDP variability in a single exper-712

iment, alternative error control metrics like False Discovery713

Exceedance (FDX) have been proposed:714

FDX := P(FDP≥ c)≤ α,715

for a threshold c ∈ (0,1). FDX provides stricter control by716

limiting the probability that FDP exceeds a predefined thresh-717

old c. This makes it particularly useful in applications where718

minimizing false positives is critical or when restricting anal-719

ysis to a small subset of discoveries is desired.720

To ensure robust error rate control tailored to genomic ap-721

plications, causarray implements two complementary strate-722

gies for FDR control: (i) Benjamini–Hochberg (BH) Proce-723

dure: The BH procedure (45) is applied directly to P-values724

obtained from the doubly robust estimation framework. BH725

controls the FDR under independence or specific positive de-726

pendence structures among test statistics. (ii) Gaussian Mul-727

tiplier Bootstrap: For tighter control of FDP variability, par-728

ticularly when test statistics are highly dependent, causarray729

incorporates a Gaussian multiplier bootstrap approach (Al-730

gorithm S2). This method simulates null distributions to esti-731

mate FDP more accurately and provides robust FDR control732

even under complex dependence structures (7).733

The choice between BH and Gaussian multiplier bootstrap734

depends on the dependency structure among test statistics.735

While BH is computationally efficient and widely used, it736

may not adequately control FDR under strong dependencies.737

The Gaussian multiplier bootstrap, on the other hand, ac-738

counts for complex dependency structures and provides more739

accurate bounds on FDP variability. Additionally, incorpo-740

rating FDX offers an extra layer of conservatism for applica-741

tions where minimizing false positives is critical. By offering742

these complementary strategies, causarray ensures robust er-743

ror rate control tailored to diverse genomic applications while744

balancing power and error control.745

Data simulation and analysis746

We consider two simulation settings. In the first simulation,747

we generate cells from zero-inflated Poisson distributions. In748

the second simulation, we use a specialized single-cell simu-749

lator Splatter (25) to generate cells with batch effects. Both750

simulations include 1 observed covariate and 4 unmeasured751

confounders. The details of the simulation are provided in752

Appendix S3.753

Benchmarking methods. To evaluate the performance of dif-754

ferential expression (DE) testing, we compare causarray with755

several established methods, both with and without confounder756

adjustment. These methods are grouped into two categories757

based on whether they account for unmeasured confounders.758

759

Methods without confounder adjustment include:760

• Wilcoxon rank-sum test: This nonparametric test is ap-761

plied to deviance residuals obtained by regressing gene762

expression counts on measured covariates using a neg-763

ative binomial generalized linear model (GLM). The764

deviance residuals serve as input for the test, which 765

does not explicitly account for unmeasured confounders. 766

• DESeq2 (26): This widely used method fits a negative 767

binomial GLM to gene expression counts and adjusts 768

for measured covariates. However, it does not account 769

for unmeasured confounders, which may bias results 770

in the presence of hidden variation. 771

Methods with confounder adjustment include: 772

• CoCoA-diff (R package mmutilR 1.0.5) (6): De- 773

signed for individual-level case-control studies, CoCoA- 774

diff prioritizes disease genes by adjusting for confounders 775

estimated from parametric models. After adjusting for 776

these confounders, the Wilcoxon rank-sum test is ap- 777

plied to the adjusted residuals, as recommended in the 778

original paper. 779

• CINEMA-OT (Python package cinemaot 0.0.3) 780

(11): CINEMA-OT separates confounding sources of 781

variation from perturbation effects using optimal trans- 782

port matching to estimate counterfactual cell pairs. Sim- 783

ilar to CoCoA-diff, the Wilcoxon rank-sum test is ap- 784

plied to the adjusted residuals of CINEMA-OT. 785

• RUV-III-NB (R package ruvIIInb 0.8.2.0) (13): 786

This method normalizes gene expression data using pseudo-787

replicates and a negative binomial model to remove un- 788

wanted variation induced by library size differences. 789

The Kruskal-Wallis test (equivalent to the Wilcoxon 790

test for two-group comparisons) is then applied to log- 791

percentile adjusted counts, as suggested by the authors. 792

However, RUV-III-NB does not directly adjust for li- 793

brary size and its ability to control FDR remains un- 794

clear, as it was not demonstrated in their experiments. 795

• RUV (R package ruv 0.9.7.1) (12): RUVr is used 796

to estimate unmeasured confounders, which are then 797

incorporated into DESeq2 for statistical inference based 798

on both observed and estimated covariates. Before run- 799

ning RUV, we successively use the functions 800

calcNormFactors, estimateGLMCommonDisp, 801

estimateGLMTagwiseDisp, and glmFit of edgeR 802

package (4.0.16) (46) to extract residuals not explained 803

by observed covariates and treatments. 804

This comprehensive benchmarking enables a thorough eval- 805

uation of each method’s ability to address unmeasured con- 806

founder estimation and perform robust statistical inference in 807

simulated data settings. 808

Evaluation metrics. To compare the performance of different 809

methods, we use four evaluation metrics, focusing on two as- 810

pects: confounder estimation and biological signal preserva- 811

tion. DESeq2 and Wilcoxon are excluded from confounder 812

estimation evaluation as they do not estimate unmeasured 813

confounders or counterfactuals. 814

The performance of confounder estimation is assessed us- 815

ing two clustering-based metrics: Adjusted Rand Index (ARI) 816
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Single-nucleus Alzheimer’s disease dataset

and Average Silhouette Width (ASW) (47). These metrics817

evaluate the quality of mixing in response and confounder818

spaces, respectively. Formally, measures the similarity be-819

tween the clustering results based on the estimated control820

responses Y (0) and the true cell-type labels of the same sam-821

ples. It adjusts for similarities that occur by chance:822

ARI =
∑
ij

(nij
2
)
− [
∑
i

(ai
2
)∑

j

(bj
2
)
]/
(n

2
)

1
2 [
∑
i

(ai
2
)

+
∑
j

(bj
2
)
]− [

∑
i

(ai
2
)∑

j

(bj
2
)
]/
(n

2
) ,823

where n is the total number of samples, nij is the number824

of samples in both cluster i and partition j, ai is the sum825

over rows in the contingency table, and bj is the sum over826

columns. Higher ARI values indicate better conservation of827

cell identity based on estimated counterfactuals compared to828

true labels. ARI ranges from -1 (complete disagreement) to829

1 (perfect agreement), with 0 indicating random clustering.830

On the other hand, ASW quantifies how well each sample831

fits within its assigned cluster compared to other clusters. It832

is defined as:833

ASW = 1
n

n∑
i=1

b(i)−a(i)
max{a(i), b(i)} ,834

where a(i) is the average dissimilarity of sample i to all other835

samples within its cluster, and b(i) is the average dissimilar-836

ity to samples in the nearest neighboring cluster. ASW val-837

ues range from -1 to 1, with higher values indicating better-838

defined clusters (47). For both metrics, median scores are839

scaled between 0 and 1 across methods within each simula-840

tion setup. For these two metrics, we use the implementations841

from the scib (1.1.5) package (47).842

To evaluate biological signal preservation, we use False843

Positive Rate (FPR) and True Positive Rate (TPR), which are844

standard metrics derived from confusion matrices: PR quan-845

tifies the proportion of false positives among all true nega-846

tives:847

FPR = FP
FP + TN

,848

where FP and TN are false positives and true negatives, re-849

spectively. A lower FPR indicates fewer false discoveries rel-850

ative to true negatives. Also known as sensitivity or recall,851

TPR measures the proportion of true positives among all ac-852

tual positives:853

TPR = TP
TP + FN

,854

where TP and FN are true positives and false negatives, re-855

spectively. A higher TPR indicates better detection of true856

signals. These metrics provide complementary insights: FPR857

evaluates specificity by penalizing false discoveries, while858

TPR assesses sensitivity by rewarding correct detections. To-859

gether, they measure how well a method balances identifying860

true signals while avoiding false discoveries.861

Single-cell Perturb-Seq dataset862

We utilize the Perturb-Seq dataset from (17), which enables863

high-resolution transcriptomic profiling of genetic perturba-864

tions in excitatory neurons. This scalable platform system-865

atically investigates gene functions across diverse cell types866

and perturbation conditions, providing critical insights into 867

neurodevelopmental processes (17). We focus on excitatory 868

neurons of the dataset, a key population implicated in neu- 869

rodevelopmental disorders such as autism spectrum disorders 870

and neurodevelopmental delay, with perturbations targeting 871

genes involved in neuronal development and synaptic func- 872

tion (17). 873

For preprocessing, we filter out cells with perturbations 874

measured in fewer than 50 cells and genes expressed in fewer 875

than 50 cells, resulting in a dataset containing 2926 cells un- 876

der 30 perturbation conditions. The GFP (Green Fluorescent 877

Protein) condition is used as a negative control to benchmark 878

the effects of other perturbations by providing a baseline for 879

comparison in downstream analyses. After filtering lowly ex- 880

pressed genes with a maximum count of fewer than 10, we 881

retain 3221 genes. 882

The batch design is highly correlated with perturbation 883

conditions; therefore, it is not included as a covariate in the 884

model for testing. Instead, only the intercept is included as 885

a covariate. For propensity score estimation, we incorporate 886

the logarithm of library sizes as an additional covariate to ac- 887

count for technical variability and use GLM as the propensity 888

score model. 889

Single-nucleus Alzheimer’s disease dataset 890

This study integrates data from three single-nucleus RNA 891

sequencing (snRNA-seq) datasets to investigate Alzheimer’s 892

disease (AD): the ROSMAP-AD dataset (35) and two datasets 893

from the Seattle Alzheimer’s Disease Brain Cell Atlas (SEA- 894

AD) consortium (36), covering the middle temporal gyrus 895

(MTG) and prefrontal cortex (PFC). These datasets provide 896

complementary insights into AD pathology across different 897

brain regions and donor cohorts. 898

The ROSMAP-AD dataset is derived from a single-nucleus 899

transcriptomic atlas of the aged human prefrontal cortex, in- 900

cluding 2.3 million cells from postmortem brain samples of 901

427 individuals with varying degrees of AD pathology and 902

cognitive impairment (35). To ensure a balanced representa- 903

tion across subjects, we perform stratified down-sampling of 904

300 cells per subject, focusing on excitatory neurons while 905

excluding two rare subtypes (‘Exc RELN CHD7’ and ‘Exc 906

NRGN’). This preprocessing results in a dataset with 124997 907

cells and 33538 genes. 908

Next, we create pseudo-bulk gene expression profiles by 909

aggregating gene expression counts across cells for each sub- 910

ject. Genes expressed in fewer than 10 subjects are filtered 911

out, resulting in a final dataset of 427 samples and 26,106 912

genes. Binary treatment is defined based on the variable ‘age first ad dx’,913

which approximates the “age at the time of onset of Alzheimer’s 914

dementia.” Covariates included in the analysis are ‘msex’ (bi- 915

ological sex), ‘pmi’ (postmortem interval), and ‘age death’ 916

(age at death). Missing values for ‘pmi’ are imputed using 917

the median of observed values. 918

The SEA-AD data are obtained from a multimodal cell 919

atlas of AD developed by the Seattle Alzheimer’s Disease 920

Brain Cell Atlas (SEA-AD) consortium (36). This resource 921

includes snRNA-seq datasets from two brain regions: the 922
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middle temporal gyrus (MTG) and prefrontal cortex (PFC),923

covering 84 donors with varying AD pathologies.924

For both MTG and PFC datasets, we perform stratified925

down-sampling of 300 cells per subject, focusing on exci-926

tatory neurons. Pseudo-bulk gene expression profiles are cre-927

ated by aggregating counts across cells for each subject. Genes928

expressed in fewer than 40 subjects are filtered out, result-929

ing in final datasets with: 80 samples and 24,621 genes for930

MTG and 80 samples and 25,361 genes for PFC. Covariates931

included in the analysis are ‘sex’, ‘pmi’, and ‘Age at death’.932

These variables account for biological and technical variabil-933

ity across donors.934

To enable comparative analyses across the three datasets935

(ROSMAP-AD, SEA-AD MTG, and SEA-AD PFC), we re-936

strict the analysis to 15586 common genes that are expressed937

in all three datasets. Genes with a maximum expression count938

below 10 among subjects are excluded to ensure robust com-939

parisons.940
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Supplementary Note S1: Confounder estimation1131

Comparison with reference-based confounder adjustment methods1132

Another approach to adjust for the unmeasured confounders is to utilize the information from negative control genes. This1133

includes scMerge (48), RUV-III-NB (13) and RUVSeq (12) etc. These methods require users to specify a set of negative1134

control genes, such as housekeeping genes, which are assumed to be solely due to unwanted variation between the two cells.1135

The approach necessitates strong prior knowledge to accurately identify negative control genes, which may not always be1136

available, especially in less well-characterized biological systems. This reliance on prior knowledge can limit the applicability1137

of the method in novel or poorly understood contexts.1138

Algorithm1139

To estimate the unmeasured confounders, we employ an improved version of GCATE (18). Suppose (Xi,Ai,Yi) for i= 1, . . . ,n1140

are n independently and identically distributed samples coming from the same distribution as (X,A,Y ) ∈ Rd ×Ra ×Rp.1141

Here, A consists of a treatments and can be both continuous and discrete for the purpose of confounder estimation. Let1142

X ∈ Rn×d,A ∈ Rn×a,Y ∈ Rn×p denote the design matrix, treatment matrix and gene expression matrix, respectively. To1143

account for different library sizes, we model the mean of the size-normalized counts1144

µij = Yij
si
,1145

which is assumed to follow a negative binomial distribution. Technically, µij’s should be non-negative integers; however, the1146

likelihood-based approaches work seamlessly even when they are non-negative real numbers. Here si is the size factor of cell1147

i, which will be specified later. We assume the conditional mean is characterized by a generalized linear model1148

logµij ∼Ai+Xi+Ui,1149

and its dispersion parameter φ is predetermined.1150

The adjusted expression µij of the ith observation and the jth gene has the density:

p(µij | θij) = h(µij)exp(µijθij−A(θij)) ,

where θij is the natural parameter. In matrix form, the natural parameters decompose as1151

Θ = X̃B>+UΓ>,1152

where X̃ = [X,A] ∈ Rn×(d+a), B ∈ Rp×(d+a), U ∈ Rn×r, and Γ ∈ Rp×r are unknown. Note that µij’s are condition-1153

ally independent given the natural parameter Θ. With this notation, the procedure of unmeasured confounder estimation is1154

summarized in Algorithm S1, and the details of the method are described below.1155

Estimation of size factors. We follow the procedure in (26) to compute the size factors si for i= 1, . . . ,n. We start by calculating1156

the geometric mean for each gene j:1157

gj = exp
(∑

i log(Yij)1{Yij > 0}∑
i1{Yij > 0}

)
.1158

Next, for each sample i, compute the initial size factors:1159

di = exp
(

median
j:Yij>0

{log(Yij)− log(gj)}
)
.1160

Finally, we normalize these size factors to have a geometric mean of 1 across all samples:1161

si = di

(
∏
i di)1/n . (S1)1162

The size factors can then be used to normalize gene expression data, adjusting for differences in sequencing depth and other sys-1163

tematic biases across samples. The normalization ensures that observed differences in expression levels reflect true biological1164

variation rather than technical artifacts.1165
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Algorithm

Algorithm S1 Unmeasured confounder estimation

Input: A data matrix Y ∈ Rn×p, a design matrix X̃ = [X,A] ∈ Rn×(d+a), a natural number r ≥ 1 (the number of latent
factors), a constant C = 2×103 for the norm constraint

1: (Estimation of size factors) Compute s ∈ Rn according to Eq. (S1).
2: (Estimation of dispersion parameters) Compute φ ∈ Rp according to Eq. (S2).
3: (Estimation of marginal effects F and uncorrelated latent components WΓ>) Solve optimization problem Eq. (S3) to

obtain Ŵ0Γ̂>0 and the initial estimate of the natural parameter matrix Θ̂0 = X̃F̂>+Ŵ0Γ̂>0 by alternative maximization:

F̂ ,Ŵ0, Γ̂0 ∈ argmin
F∈Rp×(d+a),W∈Rn×r,Γ∈Rp×r

L(X̃F>+WΓ>)

subject to X̃F>+WΓ> ∈ Bn×pC , P
X̃
W = 0.

(S3)

4: (Estimation of latent coefficients Γ) Set Ŵ :=
√
nQΣ1/2 and Γ̂ := √pV Σ1/2, where Ŵ0Γ̂>0 = √npQΣV > is the

condensed SVD withQ ∈ Rn×r, Σ ∈ Rr×r, V ∈ Rp×r.
5: (Estimation of direct effectsB and latent factors U ) Solve optimization problem Eq. (S4) to obtain (B̂,Û):

B̂,Û = argmin
B∈Rp×(d+a),U∈Rp×r

L(X̃B>+U Γ̂>)+
p∑
j=1

λj‖B·j‖1

subject to X̃B>+U Γ̂> ∈ Bn×pC , PΓ̂B = 0.

(S4)

Output: Return the estimated confounders Û .

Estimation of dispersion parameters. To estimate the dispersion parameter, we first fit generalized linear models (GLMs) on 1166

the data and obtain the estimated mean expression of gene j, denoted as ν̂j for j = 1, . . . ,p. Note that when µij comes from a 1167

Negative Binomial distribution, its variance is given by 1168

Var(µij | θij) = ν (1+αjν) , 1169

where ν =E[µij | θij ] is the conditional mean while αj is the dispersion parameter of the NB1 form. In the form of exponential 1170

family parameterized by the parameter φj , αj is the reciprocal of φj , namely, αj = 1/φj . By methods of moments, we can 1171

solve the following equation to obtain an estimator φ̂j for φj : 1172

1
n

n∑
i=1

(yij− ν̂j)2 = ν̂j (1+αν̂j) . 1173

Finally, we clip α̂j to be in [10−2,102] and set φ̂j = 1/α̂j . The estimated dispersion parameter has a close-form expression: 1174

φj = min
{

max
{

ν̂2
j

1
n

∑n
i=1(yij− ν̂j)2− ν̂j

,0.01
}
,100

}
. (S2) 1175

Estimation of marginal effects by joint likelihood estimation. The negative log-likelihood function of the data is given by 1176

L(Θ) = L(B,U ,Γ) =− 1
n

n∑
i=1

p∑
j=1

(
µijθij−A(θij)+ log

(
µij +φj−1

µij

))
. 1177

Although this is a nonconvex optimization problem, an alternative descent algorithm as in (18) can be employed to solve it 1178

efficiently. By rewriting Θ = X̃B>+ZΓ> as Θ = X̃F>+WΓ> with P
X̃
W = 0, we can disentangle the marginal effects 1179

and the uncorrelated latent components. This is correspond to step 3 of Algorithm S1. Each entry of the estimated natural 1180

parameter matrix is constrained within the Euclidean ball BC with radius C (C = 2×103 by default). 1181

Before alternative maximization, we compute deviance residuals R from the NB GLM fits with offsets logs and dispersion 1182

parameters φ, and initialize the uncorrelated confounders byW = P⊥XUR where UR ∈ Rn×r contains the first r left singular 1183

vectors of R. Here, the projection P⊥X ensures that W is uncorrelated with X . Then, we initialize the marginal effects F and 1184

latent coefficient Γ by solving GLMs with covariates [X̃,W ]. In particular, when the intercept is included in the covariates, 1185

the initial value ofW also has zero means per column. 1186
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Estimation of latent coefficients. Because the (uncorrelated) latent factors are identifiable only up to scaling and rotations, we1187

rescle the estimate at step 4 of Algorithm S1. This ensures the eigenvalues of Ŵ and Γ̂ have the same order, making the1188

alternative optimization more stable.1189

Estimation of confounding effects by adaptive penalization. The last step is to jointly recover the direct effects and the unmea-1190

sured confounders. This is done by imposing orthogonality between B̂ and Γ̂, as well as imposing sparsity on B̂. The former1191

ensures the gene-wise effects of the observed covariates and the unmeasured confounders are uncorrelated, while the latter aims1192

to reveal signals from noisy measurements.1193

The direct effect B is initialized as P⊥
Γ̂
F̂ . Then, Initialize Z and Γ using the SVD of the matrix XF̂>PΓ̂ + Ŵ Γ̂> =1194

U ′Σ′V ′>. Let Z = (U ′Σ′1/2)1:r and Γ = (V ′Σ′1/2)1:r be the initialized values.1195

To account for different scales of the effects induced by different treatment conditions, we propose to use the adaptive1196

lasso to induce sparsity of effects from multiple treatments. More specifically, the regularization parameters are set as λj =1197

λ/‖(P⊥
Γ̂
F̂ )·j‖1 for j = 1, . . . ,p in optimization problem S4.1198

Because of regularization, the estimate B̂ is typically biased towards zero, so we don’t use it for downstream analysis. It1199

is possible to perform inference with additional debiasing procedure (18). However, we use a more flexible semiparametric1200

inference method, as described below.1201

Determine the number of latent factors r1202

To determine the number of unmeasured confounders r, one can use the joint-likelihood-based information criterion (JIC) (18).1203

The JIC value is the sum of deviance and a penalty on model complexity:1204

JIC(Θ̂(r)) =−2
n∑
i=1

p∑
j=1

logp(µij | θ̂(r)
ij )+ cJIC ·

(d+a+ r) log(n∧p)
n∧p

,1205

where Θ̂(r) is the estimated natural parameter matrix with r unmeasured confounders and d+ a observed covariates, and1206

cJIC > 0 is a universal constant set to be 1 by default.1207
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Target estimands

Supplementary Note S2: Doubly robust inference 1208

Target estimands 1209

For semiparametric inference, a target estimand is a distributional functional of the observed random variables. For example, 1210

we can consider the average treatment effects (ATE), the standardized average treatment effect (SATE), the average treatment 1211

effect in levels or fold change (FC), and the log fold change (LFC). Below, we define these estimands: 1212

• ATE: τATE
j = E[Yj(1)−Yj(0)]. 1213

• SATE: τSATE
j = E[Yj(1)−Yj(0)]/

√
Var(Yj(0)). 1214

• ATE in levels: τFC
j = E[Yj(1)−Yj(0)]/E[Yj(0)]. 1215

• LFC: τLFC
j = log(E[Yj(1)]/E[Yj(0)]). 1216

Here, we use Yj to denote the random variable of the jth outcome and (Yj(0),Yj(1)) to denote its potential outcomes. Next, 1217

we present the corresponding influence functions under the identification assumptions, Assumptions 1–3. Before we present 1218

the influence functions, we introduce the uncentered influence function for E[Yj(a)] and E[Yj(0)2]: 1219

φ ja(O;πa,µja) = 1{A= a}
πa(W ) (Yj−µja(W ))+µja(W ), a= 0,1 1220

φj2(O;π0,µj2) = 1{A= 0}
π0(W ) (Y 2

j −µj2(W ))+µj2(W ), 1221

where µja(W ) = E[Yj |W,A = a] for a = 0,1 and µj2(W ) = E[Y 2
j |W,A = 0]. Note that the (centered) influence function 1222

of E[Y (a)] is given by φja(O;πa,µja)−E[Yj(a)]. It follows that 1223

ηATE
j (O;π,µj) = φj1−φj0− τATE

j . 1224

The efficient centered influence function of τSATE
j is given by 1225

ηSATE
j (O;π,µj) = φj1−φj0√

V[Yj(0)]
− τSATE

j

[
φj2 +E[Yj(0)2]−2E[Yj(0)]φj0

2V[Yj(0)]

]
. 1226

See for example, Kennedy et al. (49, Equation (6)) and Du et al. (7, Equation (4.3)). Similarly, the efficient influence function 1227

of τFC
j is given by 1228

ηFC
j (O;π,µj) = φj1−φj0

E[Yj(0)] −
τFC
j φj0

E[Yj(0)] 1229

ηLFC
j (O;π,µj) = φj1

E[Yj(1)] −
φj0

E[Yj(0)] . 1230

In the current paper, we restrict our focus to LFC; however, our implementation also allows the computation and inference using 1231

other estimands listed above. When computing the LFCs, we use the size-normalized counts Yij/si adjusted by the size factors 1232

si in place of the raw count Yij . This is akin to taking a weighted average of the sample to estimate ATE (and, subsequently, 1233

LFC). Otherwise, the effect will be driven by cells with large library sizes. 1234

CATE and VTE 1235

Under standard identification assumptions of consistency, conditional exchangeability, and positivity as in Assumptions 1–3, 1236

the conditional average treatment effect (CATE) is identified by τj(w) = µj1(w)−µj0(w). This also applies to conditional 1237

log-fold change. 1238

When one is only interested in the conditional effects in a subset of variable S ⊂ [dW +a], the DR-learner readily accom- 1239

modates runtime confounding through the decomposition τS(w) = E[φ(O) |WS = wS ]. This decomposition implies that one 1240

may estimate τS(w) by regressing φ(O) on WS , i.e. modifying the final regression step of the DR-learner. 1241
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Multiple testing adjustment by multiplier bootstrap1242

Algorithm S2 Multiple testing on standardized treatment effects

Input: The estimated influence function values η̂ij , the estimated variance σ̂2
j for i = 1, . . . ,n and j = 1, . . . ,p. The FDP

exceedance threshold c, the FDP exceedance probability α, and the number of bootstrap samples B. The threshold c̃ to
exclude genes with small variation.

1: Initialize the iteration number ` = 1, the candidate set A1 = {j ∈ [p] | σ̂2
j ≥ c̃}, the set of discoveries V1 = ∅, and the

maximal statistic of M1 = maxj∈A1 |tj |.
2: while not converge do
3: Let Dn` = diag((σ̂j)j∈A`) be the diagonal matrix of the estimated standard deviations and η̂i` = (η̂ij)j∈A` be the

vector of estimated influence function values at iteration `.
4: Draw multiplier bootstrap samples g(b)

` = (
√
nDn`)−1∑n

i=1 ε
(b)
i` η̂i`, where ε

(b)
i` ’s are independent samples from

N (0,1) for i= 1, . . . ,n and b= 1, . . . ,B.
5: Compute the maximal statistic M` = maxj∈A` |tj |.
6: Estimate the upper α-quantile of M` under H(`)

0 : τ∗j = 0, ∀ j ∈ A` by

q̂`(α) = inf
{
x

∣∣∣∣∣ 1
B

B∑
b=1

1{‖g(b)
` ‖∞ ≤ x} ≥ 1−α

}

7: Set j` = argmaxj∈A` |tj | and A`+1 =A` \{j`}.
8: if M` > q̂`(α) then
9: Set V`+1 = V`∪{j`}.

10: else
11: Declare the standardized treatment effects in A` are not significant stop the step-down process.
12: end if
13: `← `+1.
14: end while
15: Augmentation: Set V to be the union of V` and the b|V`| · c/(1− c)c elements from A` with largest magnitudes of tj .
Output: The set of discoveries V .

1243
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Bulk expression simulation details

Supplementary Note S3: Data simulation and analysis 1244

Bulk expression simulation details 1245

The bulk expression data are generated using a Poisson distribution with a zero-inflation component. The setup involves 1246

generating a latent signal matrix influenced by random noise and specific parameters. The data generation process is described 1247

in Algorithm S3 in detail. For experimental results in Fig. 2, we set d = 2 and r∗ = 1, and vary n ∈ {100,200,300}. For 1248

causarray, RUV, and RUV-III-NB, we provide the number of latent factors in r ∈ {2,4,6}. Because the simulated data consists 1249

of 3 cell types, which may be explained with 3 additional degrees of freedom, the best possible choice of the number of latent 1250

factors would be r = 4. 1251

Algorithm S3 Data generation process for pseudo-bulk gene expressions.

Input: Number of subjects n, number of covariates d, number of latent factors r0, number of cells per subject m= 10, number
of genes p= 2000, number of significant genes s= 100, and zero-inflation probability ψ = 0.1.

1: (Signals) The p-dimensional signal is derived from multiplying the signal strength by a Beta distributed vector, modified
by a random sign flip:

βj ∼ 0.5×Beta(1,0.1)× (2×Bernoulli(0.5)−1), j = 1, . . . ,s,

and βj ≡ 0 for j = s+1, . . . ,p.
2: (Cell types) The 3 cell types are generated with means {−0.5,0,0.5} and standard deviations drawn from Uniform(0.5,1).

For n subjects, the cell type assignment is randomly sampled from Categorical(3) and the cell-type specific means and
scales are stored as n-dimensional vectors µct and σct.

3: (Covariates) Sample d observed covariatesW·j ∼ 0.5σct×Nn(µct,1n) for j = 1, . . . ,d, and unobserved covariatesW·j ∼
0.25σct×Nn(µct,1n) for j = d+1, . . . ,d+ r0.

4: (Treatments) SampleA∼ Bernoulli(Logistic(Wα)) where α∼Nd(0d+r0 ,(4(d+ r0))−1/21d+r0).
5: (Coefficient matrix) Sample b0j ∼ Beta(2,1) andB·j ∼Nd(0d+r0 ,(4(d+ r0))−1/21d+r0) for j = 1, . . . ,p.
6: (Natural parameters) Let Θ = 1b>0 +WB>+Aβ>.
7: (Single-cell observations) Let Y sc ∈Rn×p×m with Y sc

··` ∼Bernoulli((1−ψ)×1n×p)×Poisson(exp(Θ)) for `= 1, . . . ,m.
8: (Bulk observations) Let Y ∈ Rn×p with Y =

∑m
`=1Y

sc
··`.

Output: CovariatesW , treatmentA, single-cell gene expression Y sc, and bulk gene expression Y .

Single-cell expression simulation details 1252

The single-cell expression data are generated by Splatter (25). Splatter explicitly models the hierarchical Gamma-Poisson pro- 1253

cesses that give rise to data observed in scRNA-seq experiments and can model the multiple-faceted variability. The data is 1254

generated from splatSimulate function from Splatter (1.26.0) package (25). When calling this function, the treatment ef- 1255

fects are simulated with the parameters: group.prob = c(0.5, 0.5), method = "groups", de.prob=0.05, 1256

de.facLoc=1., de.facScale=0.5, de.downProb=0.5; the dropout effects are simulated with the parameters: 1257

dropout.type="experiment", dropout.mid=20, dropout.shape=0.001; the batch effects are simulated 1258

with the parameters: batch.facLoc=noise, batch.facScale=0.5; while all the other parameters are the same as 1259

returned by the function newSplatParams. For experimental results in Fig. S1, we generate d = 1 covariates and r = 4 1260

unmeasured confounders. We first generate (d+ r+ 1)/2 batches with equal sample sizes, which account for d+ r degrees of 1261

freedom. To simulate varying confounding levels, we set noise in {0.1,0.2,0.3}. 1262
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Supplementary Note S4: Extra results1263

Simulation1264

1265

a

b

c

Fig. S1. Benchmarking of causarray against other methods for single-cell differential expression testing on synthetic single-
cell expression data under unmeasured confounders. a, Bar plots and box plots of different validation metrics for causarray and
other methods with r = 4 latent factors and a moderate confounding level. Bar plots (ARI, adjusted Rand index, and ASW, average
silhouette width) indicate the median performance of confounder estimation. Box plots (FPR, false positive rate, and TPR, true positive
rate) indicate the performance of biological signal preservation. The top and bottom hinges represent the top and bottom quartiles, and
whiskers extend from the hinge to the largest or smallest value no further than 1.5 times the interquartile range from the hinge. The
median is used as the center. b, Bar plots and box plots of different validation metrics for causarray and other methods with varying
confounding effects. c, Bar plots and box plots of different validation metrics for RUV, RUV-III-NB, and causarray, with varying numbers
of latent factors.
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Perturb-seq data

Perturb-seq data 1266
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Fig. S2. Additional results on the Perturb-seq dataset. a, Barplot of the number of cells in each perturbation. b, Heatmap of
the number of cells in each batch and perturbation. The batch design and the perturbation assignment of the Perturb-seq dataset are
highly correlated. c, Clustermaps of GO terms enriched in discoveries (FDR< 0.1) from causarray and RUV, respectively, where the
common GO terms are highlighted in blue. Only the top 40 GO terms that have the most occurrences in all perturbations are displayed.
d, Barplot of GO terms enriched in discoveries under Mll1 perturbation from RUV.

1267
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Alzheimer’s data1268

1269

d

cell junction assembly

establishment of protein
localization to organelle

cellular component
disassembly

ncRNA processing

proteasome−mediated
ubiquitin−dependent

protein catabolic process

modulation of chemical
synaptic transmission

regulation of
trans−synaptic signaling

RNA splicing

regulation of neuron
projection development

synapse organization

0.032 0.034 0.036 0.038

G
O

 T
er

m
s

Count
320
340
360
380

p.adjust

0.0004

0.0008

0.0012

0.0016

shared

non−membrane−bounded
organelle assembly

chromosome segregation

regulation of
neurogenesis

positive regulation of
cell development

actin filament
organization

positive regulation of
protein localization

cell growth

regulation of nervous
system development

axonogenesis

small GTPase mediated
signal transduction

0.028 0.030 0.032 0.034

Count
160
170
180
190
200

p.adjust

0.01

0.02

0.03

causarray

peroxisome organization

sperm flagellum assembly

neural tube formation

positive regulation of
DNA repair

epithelial tube formation

tube formation

stem cell population
maintenance

carboxylic acid catabolic
process

organic acid catabolic
process

microtubule−based
movement

0.01 0.02 0.03
GeneRatio

Count
20
40
60
80
100
120

p.adjust

0.02

0.03

0.04

RUV

regulation of membrane
potential

negative regulation of
protein modification

process

establishment of protein
localization to organelle

Wnt signaling pathway

cell−cell signaling by
wnt

ncRNA processing

cell junction assembly

establishment of
organelle localization

axonogenesis

regulation of neuron
projection development

0.030 0.031 0.032 0.033 0.034

G
O

 T
er

m
s

Count
420
440
460

p.adjust

1e−04
2e−04
3e−04
4e−04
5e−04

shared

response to oxygen levels

RNA splicing, via
transesterification

reactions

small molecule catabolic
process

cell−substrate adhesion

cellular response to
peptide

response to peptide
hormone

regulation of monoatomic
ion transmembrane

transport

positive regulation of
transferase activity

chromosome segregation

nuclear division

0.022 0.024 0.026 0.028

Count
160
170
180
190
200

p.adjust

0.01

0.02

0.03

0.04

causarray

negative regulation of
protein localization

regulation of cell
junction assembly

extrinsic apoptotic
signaling pathway

phospholipid biosynthetic
process

cellular response to
abiotic stimulus

cellular response to
environmental stimulus

regulation of protein
stability

intrinsic apoptotic
signaling pathway

regulation of apoptotic
signaling pathway

sensory system
development

0.015 0.018 0.021 0.024
GeneRatio

Count
110
130
150

p.adjust

0.01

0.02

0.03

0.04

RUV

Wnt signaling pathway

cell−cell signaling by
wnt

regulation of cell growth

regulation of membrane
potential

establishment of
organelle localization

ncRNA processing

establishment of protein
localization to organelle

cell junction assembly

axonogenesis

regulation of neuron
projection development

0.032 0.034 0.036

G
O

 T
er

m
s

Count
400
420
440
460

p.adjust

2e−05

4e−05

6e−05

8e−05

shared

phospholipid metabolic
process

regulation of actin
filament−based process

response to oxidative
stress

negative regulation of
cell cycle

regulation of
supramolecular fiber

organization

non−membrane−bounded
organelle assembly

gland development

muscle system process

nuclear division

chromosome segregation

0.024 0.025 0.026 0.027 0.028

Count
180
190
200

p.adjust

0.01

0.02

0.03

causarray

DNA−templated
transcription initiation

carbohydrate biosynthetic
process

purine ribonucleotide
biosynthetic process

ribonucleotide
biosynthetic process

ribose phosphate
biosynthetic process

response to insulin

nucleotide biosynthetic
process

energy derivation by
oxidation of organic

compounds

purine ribonucleotide
metabolic process

ribonucleotide metabolic
process

0.015 0.020 0.025
GeneRatio

Count
70
90
110
130
150

p.adjust

0.01

0.02

0.03

0.04

RUV

a

b

c

SEA-AD (MTG) SEA-AD (PFC)ROSMAP-AD

SE
A-

AD
 (M

TG
)

SE
A-

AD
 (P

FC
)

RO
SM

AP
-A

D

Fig. S3. Extra experimental results in AD datasets. a, Histogram of estimated propensity score in three AD datasets. b, Estimated
effect sizes of DE genes (FDR < 0.001) in SEA-AD datasets. The black dashed line represents the fitted linear regression model, and
the red dotted line represents the line y = x. c, Top gene ontology terms of the shared and distinct discoveries by causarray and RUV.
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