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Advances in single-cell sequencing and CRISPR technologies
have enabled detailed case-control comparisons and experimen-
tal perturbations at single-cell resolution. However, uncover-
ing causal relationships in observational genomic data remains
challenging due to selection bias and inadequate adjustment for

unmeasured confounders, particularly in heterogeneous datasets.

To address these challenges, we introduce causarray, a doubly
robust causal inference framework for analyzing array-based
genomic data at both bulk-cell and single-cell levels. causarray
integrates a generalized confounder adjustment method to ac-
count for unmeasured confounders and employs semiparamet-
ric inference with flexible machine learning techniques to en-
sure robust statistical estimation of treatment effects. Bench-
marking results show that causarray robustly separates treat-
ment effects from confounders while preserving biological sig-
nals across diverse settings. We also apply causarray to two
single-cell genomic studies: (1) an in vivo Perturb-seq study of
autism risk genes in developing mouse brains and (2) a case-
control study of Alzheimer’s disease using three human brain
transcriptomic datasets. In these applications, causarray iden-
tifies clustered causal effects of multiple autism risk genes and

assigned, the counterfactual (7, 8). To understand the in-
ner workings and mechanisms of biological processes and
diseases for the purpose of treatments, precision medicine,
genomic medicine and more, causal inferences will be re-
quired (9, 10).

One of the primary challenges in leveraging scRNA-seq
data for causal inference is its inherent hierarchical organi-
zation and heterogeneity (6, 7, 11). Cells derived from the
same individual are not independent observations; they share
biological factors, such as correlated variability and techni-
cal factors, including batch effects introduced during stor-
age and sequencing. These dependencies violate the assump-
tion of independent and identically distributed (i.i.d.) sam-
ples, complicating statistical analyses and rendering tradi-
tional methods inadequate for handling heterogeneous data
with unwanted variations (12, 13). Furthermore, most ge-
nomic studies are observational in nature. Unlike randomized
controlled trials, observational studies lack complete knowl-
edge of the disease or treatment assignment mechanism, lead-

consistent causally affected genes across Alzheimer’s disease datasets,Ng t0 potential biases in counterfactual estimation.

uncovering biologically relevant pathways directly linked to neu-
ronal development and synaptic functions that are critical for
understanding disease pathology.

Keywords: causal inference, confounder adjustment, counterfactual, double
robustness, differential expression analysis

Introduction

The advent of genomic research has transformed our under-
standing of biological processes and disease mechanisms. Ad-

vances in single-cell RNA sequencing (scRNA-seq) have driven

this rapid progress, offering unprecedented insights into gene
expression patterns at the cellular level (1). The high reso-
lution provided by scRNA-seq data is essential to elucidate
cellular heterogeneity and its implications for health and dis-
ease (2—4). However, fully harnessing the potential of these
data requires robust analytical frameworks capable of mov-
ing beyond association to unravel complex causal relation-
ships at single-cell resolution (5-7). The fundamental dif-
ference between association and causation is that associa-
tion assesses correlations between treatments and outcomes,
whereas causal inference aims to quantify the effect of a treat-
ment on an outcome. A popular framework for causal infer-
ence is the potential outcomes framework, which estimates
what would have happened if a different treatment had been

CRISPR perturbation experiments, a more recent but rapidly
expanding area, offer a new set of challenging analysis sce-
narios (14-16). For this experimental setting, perturbed cells
are contrasted with cells that receive a non-targeting pertur-
bation. While there is some randomness in the treatment as-
signment, it is not entirely random: continuous unmeasured
confounders such as variability in cell size or differential drug
exposure can result in biased causal estimates. Additionally,
when such experiments are performed in vivo, the possibility
of confounding increases (17), further justifying the need for
robust causal inference analysis.

Existing methods for causal inference, such as CoCoA-diff
(6) and CINEMA-OT (11), rely on simple matching tech-
niques that assume the causal structure is transferable be-
tween treatment and control groups. However, this assump-
tion breaks down when covariate distributions differ signif-
icantly across groups, leading to biased estimates. More-
over, even after controlling for observed confounders, un-
measured confounders can undermine the validity of causal
conclusions (18, 19). Other methods like surrogate variable
analysis (SVA) (20) and RUV (13) aim to address confound-
ing and unwanted variation via linear models that assume ad-
ditive relationships between covariates and outcomes. While
effective for certain bulk RNA-seq datasets, these approaches
often fail to capture the sparsity, zero inflation, and overdis-
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persion inherent in single-cell genomic data (18, 21). Tack-
ling these challenges requires integrating robust confounder
adjustment with flexible modeling techniques to ensure valid
causal inference in complex genomic data.

In response to these challenges, we introduce a new frame-
work for applying causal inference in genomic studies. Our
approach leverages generalized factor models tailored to count
data to account for unmeasured confounders, ensuring robust
adjustment for unmeasured confounders while preserving bi-
ological signals. It further relies on the potential outcomes
framework and employs a doubly robust estimation proce-
dure, which combines outcome and propensity score models
to ensure reliable statistical inference even if one model is
misspecified (22, 23). This framework effectively addresses

biases introduced by both observed and unobserved confounders,

making it particularly well-suited for analyzing complex ge-
nomic data at both bulk and single-cell levels (Fig. 1a). By
integrating advanced statistical and machine learning tech-
niques with a causal inference framework, our method en-
ables a range of downstream analyses, including accurate es-
timation of counterfactual distributions, causal gene detec-
tion, and conditional treatment effect analysis. This approach
not only improves the interpretability and precision of ge-
nomic analyses but also uncovers critical insights into gene
expression dynamics under disease or perturbation conditions,
advancing our understanding of underlying biological mech-
anisms.

We demonstrate the effectiveness of causarray through bench-

marking on several simulated datasets, comparing its per-
formance with existing single-cell-level perturbation analysis
methods and pseudo-bulk-level differential expression (DE)
analysis methods. Next, we apply causarray to two single-
cell genomic studies: a Perturb-seq study investigating autism
spectrum disorder/neurodevelopmental disorder (ASD/ND)
genes in developing mouse brains and a case-control study of
Alzheimer’s disease using human brain transcriptomic datasets.
For the Alzheimer’s disease analysis, we validate our findings
across three independent datasets, showcasing the robustness
and reproducibility of causarray in identifying causally af-
fected genes and uncovering biologically meaningful path-
ways. These applications highlight the potential of causar-
ray to advance our understanding of complex disease mecha-
nisms through rigorous causal inference.

Results

Doubly-robust counterfactual imputation and inference

Our objective is to determine whether a gene is causally af-
fected by a “treatment” variable after controlling for other
technical and biological covariates, which may affect the treat-
ment and outcome variables. Here, we use the term treatment
generally; in the narrow sense, it can mean genetic and/or
chemical perturbations (17, 24), such as CRISPR-CAS9, and,
more broadly, it can mean the phenotype of a disease (6). We
acknowledge that while many differentially expressed genes
can be considered a result of disease status, for most late-
onset disorders, a smaller fraction of genes could have ini-
tiated disease phenotypes. Our method aims to determine

2 — bioRxiv

the direct effects of treatments on modulated gene expression
outcomes.

In observational data, the response variable can be con-
founded by measured and unmeasured biological and tech-
nical covariates, making it difficult to separate the treatment
effect from other unknown covariates. As a consequence, it
is challenging to draw causal inferences; even tests of as-
sociation may lead to an excess of false discoveries and/or
low power. Fortunately, the potential outcomes framework
(22, 23) formulates general causal problems in a way that al-
lows for the treatment effect to be separated from the effects
of other variables. However, even this framework is chal-
lenged by unmeasured covariates. Before introducing our
method for estimating unmeasured confounders, we first out-
line the general potential outcomes framework.

Consider a study in which Y is the response variable and
A is the binary treatment variable for an observation. In the
potential outcomes framework, Y (a) is the outcome that we
would have observed if we set the treatment to A = a. Natu-
rally, we can only observe one of the two potential outcomes
for each observation, so

Y =1{A=1}Y(1)+ 1{4 =0}Y(0),

In the context of a case-control study of a disease, this would
answer the question: What is the expected difference in gene
expression if an individual had the disease (case, A = 1) ver-
sus if they did not (control, A = 0)?

Doubly robust methods provide a powerful tool for es-
timating potential outcomes in observational studies where
randomization is not possible (22, 23). Specifically, we esti-
mate two key quantities: (1) 4 (X), the mean response of the
outcome variable conditional on treatment A = a and covari-
ates X = x, and (2) 7, (X), the propensity score, which is
defined as the probability of receiving treatment A = a given
covariates X, i.e., o (X) =P(A =a | X). Using these esti-
mates, we compute potential outcomes as

S zﬂ{A:a}

Y(Cl) %a(X) (Y_ﬁa(X))+ﬁa(X)

The doubly robust estimator’s name comes from the fact that
it provides a consistent estimate as long as either the out-
come model, y,(X), or the propensity score model, m,(X),
is correctly specified. Given this estimate, we can easily per-
form downstream inference tasks such as computing log fold
change (LFC) (Methods), and testing for causal effects on
gene expressions (Fig. 1a). An advantage of this approach
is that counterfactual imputation denoises/balances gene ex-
pression under two different conditions. Additionally, hav-
ing access to estimated potential outcomes facilitates down-
stream analyses such as estimating causal effects conditional
on measured confounders like age.

A key step in these types of analyses is estimating unmea-
sured confounders. To adjust for confounding, factor mod-
els were popularized in surrogate variable analysis literature
and have since been widely adopted in bulk gene expression
studies (20). Recently, we extended this approach to single-
cell RNA-seq data using generalized linear models that better
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Simulation study demonstrates the advantages of causarray
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Fig. 1. Overview of the proposed causarray method. a, lllustration of the data generation process for pseudo-bulk and single-cell data. b, The gene expression matrix,
Y, is linked to the treatment, A, measured covariates, X, and confounding variables, U, via a GLM model. The cell-wise size factor, s, and gene-wise dispersion parameter,

¢, are estimated from the data, and the unmeasured confounder U is estimated by U through the augmented GCATE method. ¢, Generalized linear models and flexible
machine learning methods including random forest and neural network can be applied for outcome modeling (E[Y | A = a, X, 6] = ﬁa(X, ﬁ)) and propensity modeling
P(A=a| X,U) = ?Q(X, f]\)) The estimated outcome and propensity score functions give rise to the estimated potential outcomes for each cell and each gene. d,
Downstream analysis includes contrasting the estimated counterfactual distributions, performing causal inference, and estimating the conditional average treatment effects.

accommodate pseudobulk and single-cell outcome variables
(18). Using this generalized factor analysis approach, we es-
timate unmeasured confounders U alongside potential out-
comes (Fig. 1b-c), enabling direct estimation of downstream
quantities such as LFC (Fig. 1d).

Du etal. — causarray

Simulation study demonstrates the advantages of causarray
We evaluate the performance of causarray in two simulated
settings (Appendix S3). In the first setting, we generate sim-
ulated pseudo-bulk data, while in the second, we generate
simulated single-cell data using the Splatter simulator (25),
which explicitly models the hierarchical Gamma-Poisson pro-
cesses underlying scRNA-seq data and captures multi-faceted
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Fig. 2. Benchmarking of causarray against other methods for single-cell differential expression testing on synthetic expression data with unmeasured con-

founders. a, The analysis pipeline produces a confounder adjustment and a statisti

c for DE testing. We illustrate two types of criteria used for benchmarking confounder

adjustment and DE methods in simulation for bulk simulations (b-e) and single-cell simulations (Fig. S1). b, Performance comparison of causarray and other methods with a
well-specified number of latent factors (r = 4). Bar plots show median ARI and ASW scores for confounder estimation, while box plots display FPR and TPR for biological
signal preservation. The top and bottom hinges represent the top and bottom quartiles, and whiskers extend from the hinge to the largest or smallest value no further than
1.5 times the interquartile range from the hinge. The center indicates the median. ¢, Robustness analysis of causarray, RUV-III-NB, and RUV under varying numbers of latent

factors (r = 2,4, 6). Bar plots show ARl and ASW scores for confounder estimation

, while box plots display FPR and TPR for DE testing. d-e, causarray disentangles the

treatment effects and unmeasured confounding effects in the response and confounder spaces. UMAP projection of (d) expression data Y colored by the values of treatment
A (purple for control A = 0 and yellow for treated A = 1) and unmeasured continuous confounder U; and (e) estimated potential outcome under control Y (0) colored by

the values of treatment A and continuous confounder U'.

variability. Each dataset consists of 100-300 cells, approxi-
mately 2,000 genes, 1-2 covariates, and 4 unmeasured con-
founders.

To benchmark causarray, we compare it with several ex-
isting methods designed for differential expression (DE) test-
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ing, both with and without confounder adjustment (Fig. 2a).
For methods that do not account for unmeasured confounders,
we include the Wilcoxon rank-sum test and DESeq?2 (26). In
the presence of measured covariates, both regress the gene
expression counts with respect to the covariates using the
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Fig. 3. Statistical test results of the effects of CRISPR perturbation on gene expression in excitatory neuron data. a, Number of significant genes detected under all
perturbations using three different methods. The detection threshold for significant genes is FDR< 0.1 for all methods. b-c, Heatmaps of GO terms enriched (adjusted P
value < 0.05, g < 0.2) in discoveries from causarray and RUV, respectively, where the common GO terms are highlighted in blue. Only the top 20 GO terms that have the
most occurrences in all perturbations are displayed. d-e, Barplots of GO terms enriched in discoveries under Satb2 perturbation from causarray and RUV, respectively.

Poisson or negative binomial generalized linear model, re-
spectively. The input to the Wilcoxon rank sum test is the de-
viance residuals. For confounder-adjusted methods, we con-
sider CoCoA-diff (6), CINEMA-OT (11), CINEMA-OT-W
(11), RUV (12), and RUV-III-NB (13), where recommended
DE test methods are subsequently applied with estimated con-
founders. A short summary of each of these benchmarking
comparison methods can be found in Methods.

To assess the performance of unmeasured confounder ad-
justment procedures, we use two metrics: adjusted Rand in-
dex (ARI) and average silhouette width (ASW). More specif-
ically, we use ARI to quantify the alignment between esti-

Du et al.

causarray

mated and true unmeasured confounders and ASW to eval-

uate cell type separation in the control response space. A

higher ARI value indicates better coherence and a higher ASW
value reflects better preservation of biological signals after

removing confounding effects. Additionally, to assess the

performance of DE testing, we use two metrics: false pos-

itive rate (FPR) and true positive rate (TPR) (Methods).

We first evaluate how sample size and confounding lev-
els influence the performance of DE testing across methods.
Among all tested approaches, only causarray, RUV, Wilcoxon,
and DESeq? effectively control FPR across all settings (Fig. 2b
and Fig. Slab). causarray maintains FPR close to the nomi-
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Fig. 4. Comparison of DE genes discovered by causarray and RUV on excitatory neurons for Alzheimer’s disease. a, The ratio of false discoveries to all 15586 genes
of DE test results with permuted disease labels on the ROSMAP-AD dataset. Three methods, causarray with FDX control, causarray with FDR control, and RUV with FDR
control, are compared. b, The similarity of estimated effect sizes on SEA-AD MTG and PFC datasets. The slope is estimated from linear regression of effect sizes on the PFC
dataset against those on the MTG dataset. ¢, DE genes by causarray and RUV over 15586 genes (adjusted P value < 0.1). d, Venn diagram of associated GO terms from
causarray and RUV (adjusted P value < 0.05, ¢ < 0.2). e, Considering only the top 50 positively regulated and the top 50 negatively regulated DE genes from causarray

and RUV, we map them to the top 5 biological processes (the green nodes).

nal level of 0.1 across all sample sizes and confounding lev-
els, while RUV-1II-NB, CINEMA-OT-W, CINEMA-OT, and

CoCoA-diff exhibit inflated FPRs exceeding 0.5 in most cases.

Notably, causarray achieves the highest TPRs across all sce-
narios, with values ranging from approximately 0.8 to 0.9 de-
pending on sample sizes and confounding levels (Fig. 2b and
Fig. Slab). This is significantly higher than RUV-III-NB and
CoCoA-diff, which achieve TPRs below 0.5 in most settings,
particularly for smaller sample sizes or higher confounding
levels. These results highlight causarray’s ability to balance

6 — bioRxiv

sensitivity and specificity effectively.

In terms of unmeasured confounder adjustment, causarray,
RUV-III-NB, and CoCoA-diff achieve both ARI and ASW
scores consistently above 0.7 across all sample sizes in both
bulk and single-cell data (Fig. 2b, Fig. Slab), outperform-
ing RUV, CINEMA-OT-W, CINEMA-OT, which show ARI
scores below 0.5 in most cases. Furthermore, causarray effec-
tively disentangles treatment effects from unmeasured con-
founding effects. In the response space (Fig. 2d), treatment
groups are distinctly separated with minimal overlap, while
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causarray applied to an in vivo Perturb-seq study reveals causal effects of ASD/ND genes
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Fig. 5. Results of DE analysis of 10 selected genes by causarray. The top 5 up-regulated and top 5 down-regulated genes in estimated LFCs (adjusted P value < 0.05)
are visualized. a, Estimated counterfactual distributions. The values are shown in the log scale after adding one pseudo-count. b, Estimated log-fold change of treatment
effects, conditional on age for selected genes. The center lines represent the mean of the locally estimated scatter plot smoothing (LOESS) regression, and the shaded area

represents a 95% confidence interval at each value of age.

variations within groups reflect unmeasured confounders. In
the confounder space (Fig. 2e), causarray produces a uniform
mixing of treatment groups while accurately reconstructing
continuous confounder values.

Finally, we assess the robustness of causarray, RUV-III-
NB, and RUV under varying numbers of latent factors (Fig. 2c
and Fig. S1c). Among these methods, only causarray consis-
tently controls FPR at nominal levels of 0.1 regardless of the
number of factors or sample size. In contrast, RUV-III-NB
exhibits inflated median FPRs exceeding 0.2 when more fac-
tors are included (e.g., r = 6). While RUV-III-NB performs
well in terms of ARI (above 0.8) and ASW (above 0.7), its
DE testing performance is inferior to RUV due to poor FPR
control under certain conditions. Based on these findings, we
proceed with causarray and RUV for real data analysis.

causarray applied to an in vivo Perturb-seq study reveals
causal effects of ASD/ND genes

represent a complex group of conditions that have been ex-
tensively studied using genetic approaches. To investigate the
underlying mechanisms of these disorders, researchers have
employed scalable genetic screening with CRISPR-Cas9 tech-
nology (17). Frameshift mutations were introduced in the
developing mouse neocortex in utero, followed by single-
cell transcriptomic analysis of perturbed cells from the early
postnatal brain (17). These in vivo single-cell Perturb-seq
data allow for the investigation of causal effects of a panel of
ASD/ND risk genes. We analyze the transcriptome of cortical
projection neurons (excitatory neurons) perturbed by one risk
gene or a non-targeting control perturbation, which serves as
a negative control.

Unmeasured confounders, such as batch effects and un-
wanted variation, are likely present in this dataset due to the
batch design being highly correlated with perturbation con-
ditions (Fig. S2ab). Additionally, the heterogeneity of single
cells assessed in vivo introduces further complexity. These

An integrative analysis of multiple single perturbations. Autism confounding factors may reduce statistical power for gene-

spectrum disorders and neurodevelopmental delay (ASD/ND)

Du etal. — causarray
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level differential expression (DE) tests, as noted in the orig-
inal study (17), which instead focused on gene module-level
effects. To address this limitation, we apply causarray to in-
corporate unmeasured confounder adjustment and conduct
a more granular analysis at the single-gene level. This ap-
proach enables us to uncover nuanced genetic interactions
and causal effects that may provide deeper insights into the
etiology of ASD/ND.

Functional analysis. Gene module-level analyses have been
shown to provide greater statistical power for detecting bi-
ologically meaningful perturbation effects when fewer cells
are available (17). The original study adopted this approach
but relied on a linear model rather than a negative binomial
model, potentially limiting its ability to detect broader sig-
nals at the individual gene level. Here, we compare causarray
with RUV and DESeq2 (without confounder adjustment) to
identify significant genes and enriched gene ontology (GO)
terms associated with various perturbations.

In terms of significant gene detection, causarray identi-
fies a comparable number of significant genes to RUV across
most perturbations, while DESeq2 consistently detects fewer
significant genes (Fig. 3a). The variation in significant de-
tections across different perturbed genes suggests distinct bi-
ological impacts of each knockout. Functional analysis fo-
cuses on enriched GO terms on the DE genes under each per-
turbation condition where discrepancies arise between causar-
ray and other methods. Genes identified by causarray are
enriched for biologically relevant GO terms with clear clus-
tering patterns (Fig. 3b-c, Fig. S2c¢). In contrast, RUV shows
less distinct clustering and enrichment patterns.

Notably, while RUV identifies GO terms related to ribo-
some processes previously implicated in ASD studies (27),
these findings remain controversial. Some argue that dysreg-
ulation in translation processes and ribosomal proteins may
reflect secondary changes triggered by expression alterations
in synaptic genes rather than direct causal effects (28). In
contrast, GO terms identified by causarray align more closely
with the expected causal effects of ASD/ND gene perturba-
tions (29, 30).

To further validate these findings, we examine the pertur-
bation condition for Sarb2, which yields the largest num-
ber of significant genes identified by both methods (adjusted
P value < 0.1). Satb2 is known to play critical roles in
neuronal development, synaptic function, and cognitive pro-
cesses (31, 32). Using causarray, we detect enrichment for
GO terms directly related to neuronal function and develop-
ment, such as “regulation of neuron projection development,”
“regulation of synapse structure or activity,” and “synapse
organization” (Fig. 3d). These findings are consistent with
Satb2’s established roles in neuronal development and synap-
tic plasticity (33, 34). On the other hand, RUV identifies en-
richment for terms related to mitochondrial function and en-
ergy metabolism, such as “mitochondrial electron transport,”
“cellular respiration,” and “ATP synthesis” (Fig. 3e). While
these processes are important for general cellular function,
they are less directly relevant to Sarb2’s primary biological
roles.

8 — bioRxiv

Overall, this analysis demonstrates that causarray provides
greater specificity in detecting biologically meaningful causal
effects of gene perturbations. Its ability to disentangle con-
founding influences while preserving relevant biological sig-
nals highlights its effectiveness in analyzing complex genomic
datasets.

causarray reveals causally affected genes of Alzheimer’s dis-
ease in a case-control study

An integrative analysis of excitatory neurons. We analyze
three Alzheimer’s disease (AD) single-nucleus RNA sequenc-
ing (snRNA-seq) datasets: a transcriptomic atlas from the
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Religious Orders Study and Memory and Aging Project (ROSMA®)

(35) and two datasets from the Seattle Alzheimer’s Disease
Brain Cell Atlas (SEA-AD) consortium (36), which include
samples from the middle temporal gyrus (MTG) and pre-
frontal cortex (PFC). Our objective is to compare the perfor-
mance of causarray and RUV in pseudo-bulk DE tests of AD
in excitatory neurons.

To evaluate the validity, we perform a permutation experi-
ment on the ROSMAP-AD dataset by permuting phenotypic
labels. Ideally, no significant discoveries should be made un-
der this null scenario. However, RUV produces a large num-
ber of false discoveries, with its performance deteriorating as
the number of latent factors increases. In contrast, causarray
effectively controls the false discovery rate (FDR), producing
minimal false positives (Fig. 4a). Additionally, we assess co-
herence across datasets by examining effect sizes in SEA-AD
(MTG) and SEA-AD (PFC). Effect sizes estimated by causar-
ray exhibit higher consistency across varying g-value cutoffs
compared to RUV (Fig. 4b, Fig. S3b). When inspecting DE
genes across all three AD datasets, causarray identifies more
consistent discoveries than RUV (Fig. 4c), highlighting its
robustness in detecting causally affected genes.

Functional analysis. We further compare functional enrich-
ment results between causarray and RUV using gene ontol-
ogy (GO) terms associated with DE genes. Across the three
datasets, causarray identifies 165 common GO terms, signif-
icantly more than the 60 identified by RUV (Fig. 4d). Both
methods detect GO terms relevant to neuronal development
and synaptic functions, which are critical for understanding
AD pathology. However, causarray shows distinct enrich-
ment in categories such as “positive regulation of cell devel-
opment” and “negative regulation of cell cycle’, reflecting
its increased sensitivity to synaptic and neurotransmission-
related processes. In contrast, RUV’s results exhibit more
dataset-specific enrichments, such as biosynthetic processes
in SEA-AD (PFC), apoptotic processes in SEA-AD (MTG),
and catabolic processes in ROSMAP-AD (Fig. S3c). These
findings suggest that causarray captures more generalizable
biological signals across datasets.

Both methods identify overlapping top functional categories
related to key biological processes associated with AD pathol-
ogy (Fig. S3e). However, causarray associates a larger num-
ber of genes with these categories, identifying 3393 DE genes
compared to 3187 for RUV (Fig. 4c). Additionally, causarray
reveals 165 common GO terms across the three datasets, sig-
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causarray reveals causally affected genes of Alzheimer’s disease in a case-control study

nificantly more than the 60 identified by RUV (Fig. 4d). The
visualization of the discovered networks, as defined as the top
5 GO terms and associated genes included in the top 100 DE
gene discoveries, further highlights the enhanced sensitivity
and comprehensiveness of causarray. Specifically, the causar-
ray network contains 17 gene nodes and 81 edges, compared
to 14 gene nodes and 57 edges in the RUV network (Fig. 4e).
This greater interconnectedness in the larger causarray net-
work suggests a more intricate and informative representa-
tion of underlying biological relationships, emphasizing its
ability to capture broader and more relevant genetic factors
associated with AD pathology.

Counterfactual analysis. The counterfactual framework em-
ployed by causarray enables downstream analyses that di-
rectly utilize estimated potential outcomes. By examining
counterfactual distributions for significant genes (Fig. 5a), we
observe distinct shifts in expression levels between treatment
(Y (1)) and control (Y'(0)) groups. Downregulated genes show
a shift toward lower expression levels under disease condi-
tions, while upregulated genes exhibit increased expression.
Conditional average treatment effects (CATEs) reveal age-
dependent trends for these genes (Fig. 5b). For example, up-
regulated genes such as SLC16A6 and RFLNA show stronger
effects at extreme ends of the age distribution, while others
like SLC38A2 and BAG®6 display nuanced changes across the
aging spectrum.

These findings align with prior studies highlighting the
roles of specific genes in aging-related processes. For in-
stance, ZFR2, RFLNA, BAG6, and RAD21 have been impli-
cated in chromatin remodeling, synaptic plasticity, and cellu-
lar stress responses critical for aging and neurodegeneration
(37-40). While nonparametric fitted curves exhibit wider un-
certainty bands, particularly at the boundaries, which can be
observed here, the significant trends observed for key genes
highlight their potential relevance in AD pathology. Overall,
these results demonstrate that causarray provides nuanced in-
sights into age-dependent gene regulation mechanisms while
maintaining robust control over confounding influences.

Discussion

The rapid growth of high-throughput single-cell technologies
has created an urgent need for robust causal inference frame-
works capable of disentangling treatment effects from con-
founding influences. Existing methods, such as CINEMA-
OT (11), have advanced the field by separating confounder
and treatment signals and providing per-cell treatment-effect
estimates. However, these methods rely on the assumption
of no unmeasured confounders, which is often violated in
observational studies and in vivo experiments. Additionally,
many confounder adjustment methods, such as RUV (12), de-
pend on linear model assumptions that do not directly model
count data or provide robust differential expression testing at
the gene level. Addressing these limitations, causarray intro-
duces a doubly robust framework that integrates generalized
confounder adjustment with semiparametric inference to en-
able reliable and interpretable causal analysis.

Du etal. — causarray

causarray directly models count data using generalized lin-
ear models for unmeasured confounder estimation, overcom-
ing a key limitation of RUV in DE analysis. Unlike CINEMA -
OT (11) and CoCoA-diff (6), which rely on optimal transport
or matching techniques, causarray employs a doubly robust
framework that combines flexible machine learning models
with semiparametric inference. This approach enhances sta-
bility and interpretability while enabling valid statistical in-
ference of treatment effects. Benchmarking results demon-
strate that causarray outperforms existing methods in disen-
tangling treatment effects from confounding influences across
diverse experimental settings, maintaining superior control
over false positive rates while achieving higher true positive
rates.

In an in vivo Perturb-seq study of ASD/ND genes, causar-
ray uncovered gene-level perturbation effects that were missed
by prior module-based analyses. It identified biologically rel-
evant pathways linked to neuronal development and synaptic
functions for multiple autism risk genes. Similarly, in a case-
control study of Alzheimer’s disease using three human brain
transcriptomic datasets, causarray revealed consistent causal
gene expression changes across datasets and highlighted key
biological processes such as synaptic signaling and cell de-
velopment. These findings underscore the ability of causar-
ray to provide biologically meaningful insights across diverse
contexts.

Despite its strengths, causarray has certain limitations. Its
performance depends on the accurate estimation of unmea-
sured confounders, which may vary with dataset complexity
and experimental design. Furthermore, while causarray pro-
vides robust DE testing, its integration with advanced spatial
or trajectory analysis frameworks remains unexplored (41,
42). Future research could focus on extending causarray to
incorporate prior biological knowledge or extrapolate to un-
seen perturbation-cell pairs, similar to emerging methods like
CPA (43). Such advancements would further enhance its ap-
plicability in single-cell causal inference.
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Methods

Counterfactual

Potential outcomes framework.Let O = (A, W,Y) € {0,1} x
RW x RP be a tuple of random vectors, where A is the bi-
nary treatment variable (e.g., presence or absence of a dis-
ease or perturbation), W is the vector of covariates (e.g., bi-
ological or technical factors influencing both treatment and
outcome), and Y is the observed outcomes, defined as Y =
AY (1) + (1 — A)Y(0), where Y (1) and Y (0) are the poten-
tial outcomes under treatment and control, respectively.

The potential outcomes framework assumes that for each
individual or observation, there exist two potential outcomes:
one if the individual receives the treatment (Y (1)) and one if
they do not (Y'(0)). However, only one of these outcomes can
be observed for each individual, depending on whether they
were treated (A = 1) or not (A = 0). This framework allows
us to define causal effects in terms of these unobservable po-
tential outcomes.

To estimate causal effects, we rely on the following key
assumptions:

Assumption I (Consistency) The observed response is con-
sistent such that Y(a) =Y | A =a.

Assumption 2 (Positivity) The propensity score m, (W) :=
P(A=a|W) € (¢,1—¢) for some € € (0,1/2).

Assumption 3 (No unmeasured confounders) A 11 Y'(a) |
W, forall a € {0,1}.

Under these assumptions (Assumptions 1-3), the observed
outcome Y is conditionally independent of the treatment A,
given the covariates W. This allows us to estimate the ex-
pected potential outcome for gene j under treatment (a = 1)
or control (a = 0) as:

E[Yj(a)] = ;(W,a) := E[u;(W,a)],

where (W, a) = E[Y; | W, A = a] is a regression function
that models the relationship between covariates, treatment,
and outcomes.

Suppose we have a dataset D = {O1,...,0,,} consisting
of i.i.d. samples from the same distribution as O. Let P,
denote the empirical measure over D, defined as:

P, f(O)=n""1>"f(0y),
=1

for any measurable function f. This represents the sample
average of a function evaluated on all observations in the
dataset.

A naive plug-in estimator for ¢; can then be constructed
by replacing the true regression function (W, a) with its
estimated counterpart /1; (T, a) and using sample averages to
approximate expectations. The resulting estimator is:

n
G5t =Pl (Wa)] =n~ 1Y i (Wi, a).
=1
This plug-in estimator provides an estimate of the expected

potential outcome by averaging predictions from the estimated
regression model over all observations in the dataset.

10 — bioRxiv

While Assumptions 1-3 are foundational for causal infer-
ence, violations of the no unmeasured confounders assump-
tion (Assumption 3) are common in real-world applications
(18, 19). For instance, in single-cell transcriptomic studies,
technical factors such as batch effects or biological hetero-
geneity (e.g., cell size or cell cycle stage) may act as unmea-
sured confounders. These unmeasured variables can bias es-
timates of causal effects by introducing spurious associations
between treatment and outcome. Addressing this limitation
motivates the need for methods that explicitly model and ad-
just for unmeasured confounders.

The probabilistic modeling of confounders. To account for
unmeasured confounders, we propose an improved version of
the GCATE method (18), which identifies potential unmea-
sured confounders under generalized linear models (GLMs).
This approach extends traditional confounder adjustment meth-
ods by incorporating more flexible nonlinear models that bet-
ter capture the unique characteristics of genomic count data,
such as zero-inflation (an excess of zero counts) and over-
dispersion (greater variability than expected under standard
Poisson assumptions). These enhancements allow for more
accurate modeling of gene expression data, addressing limi-
tations of simpler linear models in high-dimensional genomic
analyses.

For the ith observation (e.g., a single cell or sample) and
the jth gene, we model the adjusted expression j1;; = Y;;/s;,
where Y;; is the observed expression level, and s; is the size
factor for the jth gene. The size factor accounts for differ-
ences in sequencing depth or library size across samples, en-
suring that comparisons are not biased by technical variabil-
ity. We assume that y;; follows an exponential family dis-
tribution, which is a flexible class of probability distributions
commonly used in GLMs. The density of j;; is given by:

(i | 05f) = h(pij) exp (pijbi; — A(0i5)),

where 0;; is the natural parameter that determines the mean
and variance of p;;, h(u;;) is a known base measure, and
A(0;;) is the log-partition function, which ensures that the
density integrates to 1.

In matrix form, we model the natural parameters

© = (0ij)1<i<n1<j<p:
as a decomposition into two components:
©=XB'+UT".

Here, X = [X, A] € R"*(@+1) combines observed covari-
ates X (e.g., biological or technical factors) with treatment
indicators A, where n is the number of observations, and d
is the dimension of X ; B € RP x(d+1) represents unknown
regression coefficients for the effects of covariates and treat-
ments on gene expression; U € R™*" represents latent vari-
ables capturing unmeasured confounders, where 7 is the num-
ber of latent factors; and T' € RP*" represents unknown coef-
ficients linking unmeasured confounders to gene expression.
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This decomposition assumes that gene expression levels
are influenced by both observed covariates (35 ) and unmea-
sured confounders (U). The term XBT captures the effects
of observed covariates and treatments, while UT' " captures
the effects of unmeasured confounders.

To estimate these unknown quantities (B, U, I'), we em-
ploy methods detailed in Appendix S1. This includes tech-
niques for estimating latent factors (U) and extending the
framework to handle multiple treatments. Once these quan-
tities are estimated, we treat W = [X,U] € R¥*" as the
complete set of confounding covariates—combining both ob-
served covariates (X') and estimated unmeasured confounders
).

With this expanded set of covariates, we perform doubly
robust estimation and inference as described in subsequent
sections. This approach ensures that treatment effects are es-
timated while accounting for both observed and unmeasured
confounding influences, improving robustness and reliability
in causal inference.

Doubly robust estimation. Throughout the paper, we consider
the log fold change (LFC) as the target estimand:

7j := log(E[Y;(1)]/E[Y;(0)]),

which quantifies the relative change in expected gene expres-
sion levels between treatment (A = 1) and control (A = 0)
conditions for gene j. Extensions to other estimands are pro-
vided in Appendix S2.

The doubly robust estimation framework is a widely used
approach that is agnostic to the underlying data-generating
process. It provides valid estimation and inference results as
long as either the conditional mean model (y1;) or the propen-
sity score model () is correctly specified. This robustness
property ensures reliable causal effect estimation even in the
presence of potential misspecification of one of the models.

More specifically, a one-step estimator 7; of the estimand
7; admits a linear expansion:

- BN -
Tj—Tj:EZW(OiEW#J’)"’OP(n 12),
=1

where 7;(O;;m, ;) is the influence function of 7;, which
quantifies how individual observations contribute to the over-
all estimate. Here, 7(W') = P(A = a | W) is the propensity
score model, and p;(W,a) = E[Y; | W, A = a] is the out-
come model for gene j. See Appendix S2 for detailed deriva-
tions of these functions.

To estimate the nuisance functions f;’s (outcome models)
and 7 (propensity score model), we use flexible statistical
machine learning methods. Specifically, for outcome mod-
els 1, we employ generalized linear models (GLMs) with
a negative binomial likelihood and log link function. This
choice accounts for over-dispersion in count data while en-
suring computational efficiency given the high dimensional-
ity of genomic data. For the propensity score model 7, we
provide two built-in options: (i) logistic regression and (ii)

Du etal. — causarray

Counterfactual

random forests. In our experiments, random forests are con-
figured with 1,000 trees, a minimum leaf size of 3, and a max-
imum tree depth of 11. Extrapolated cross-validation (ECV)
(44) is used to select hyperparameters by minimizing the es-
timated mean squared error. Users can also supply alternative
estimates for these nuisance functions if desired.

To perform inference, we first compute the estimated influ-
ence function values 7);(O;; 7, i;) and use them to estimate
the variance for gene j:

n
o /N A 2
0j =—— ;nj(Oi,ﬂ,uj) .

Using these quantities, a t-statistic for gene j can be com-
puted as:
2
_ T
9j
This statistic enables hypothesis testing and confidence inter-
val construction for causal effects on gene expression.

False discovery rate control. Genomic studies often involve
testing thousands of hypotheses simultaneously, making it
crucial to control statistical Type-I errors. Two widely rec-
ognized error rate metrics are the Family-Wise Error Rate
(FWER) and the False Discovery Rate (FDR), each suited
to different contexts. Consider p hypothesis tests, let S C
{1,...,p} denote the set of discoveries, and Ho C {1,...,p}
denote the set of true null hypotheses. The false discovery
proportion (FDP) is defined as the ratio of false positives to
total discoveries:

|SNHo

FDP = ————.
ISIVT

The FWER controls the probability of making at least one
false discovery:

FWER := P(FDP > 0) < a,

where a € (0,1) is a predefined significance level. This strin-
gent control is particularly useful in scenarios where even a
single false positive is unacceptable. However, FWER con-
trol often leads to reduced statistical power, especially in high-
dimensional settings with many hypotheses, potentially over-
looking true effects.

In contrast, FDR control provides a more balanced ap-
proach by controlling the expected proportion of false dis-
coveries among all discoveries:

FDR := E[FDP] < o

This approach enhances power in multiple testing scenarios
and has become the standard for differential expression anal-
ysis in genomics due to its ability to identify more significant
features while maintaining a low proportion of false positives
(45). Importantly, FDR controls the expected proportion of
false discoveries across repeated experiments but does not
guarantee bounds on FDP in any single experiment. This dis-
tinction becomes critical in genomic studies where test statis-
tics are often highly dependent, leading to variability in FDP
across experiments.
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To address limitations of standard FDR procedures, such
as their inability to capture FDP variability in a single exper-
iment, alternative error control metrics like False Discovery
Exceedance (FDX) have been proposed:

FDX :=P(FDP > ¢) < a,

for a threshold ¢ € (0,1). FDX provides stricter control by
limiting the probability that FDP exceeds a predefined thresh-
old c. This makes it particularly useful in applications where
minimizing false positives is critical or when restricting anal-
ysis to a small subset of discoveries is desired.

To ensure robust error rate control tailored to genomic ap-
plications, causarray implements two complementary strate-
gies for FDR control: (i) Benjamini—Hochberg (BH) Proce-
dure: The BH procedure (45) is applied directly to P-values
obtained from the doubly robust estimation framework. BH
controls the FDR under independence or specific positive de-
pendence structures among test statistics. (ii) Gaussian Mul-
tiplier Bootstrap: For tighter control of FDP variability, par-
ticularly when test statistics are highly dependent, causarray
incorporates a Gaussian multiplier bootstrap approach (Al-
gorithm S2). This method simulates null distributions to esti-
mate FDP more accurately and provides robust FDR control
even under complex dependence structures (7).

The choice between BH and Gaussian multiplier bootstrap
depends on the dependency structure among test statistics.
While BH is computationally efficient and widely used, it
may not adequately control FDR under strong dependencies.
The Gaussian multiplier bootstrap, on the other hand, ac-
counts for complex dependency structures and provides more
accurate bounds on FDP variability. Additionally, incorpo-
rating FDX offers an extra layer of conservatism for applica-
tions where minimizing false positives is critical. By offering
these complementary strategies, causarray ensures robust er-
ror rate control tailored to diverse genomic applications while
balancing power and error control.

Data simulation and analysis

We consider two simulation settings. In the first simulation,
we generate cells from zero-inflated Poisson distributions. In
the second simulation, we use a specialized single-cell simu-
lator Splatter (25) to generate cells with batch effects. Both
simulations include 1 observed covariate and 4 unmeasured
confounders. The details of the simulation are provided in
Appendix S3.

Benchmarking methods. To evaluate the performance of dif-
ferential expression (DE) testing, we compare causarray with
several established methods, both with and without confounder
adjustment. These methods are grouped into two categories
based on whether they account for unmeasured confounders.

Methods without confounder adjustment include:

* Wilcoxon rank-sum test: This nonparametric test is ap-
plied to deviance residuals obtained by regressing gene
expression counts on measured covariates using a neg-
ative binomial generalized linear model (GLM). The
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deviance residuals serve as input for the test, which
does not explicitly account for unmeasured confounders.

* DESeq2 (26): This widely used method fits a negative
binomial GLM to gene expression counts and adjusts
for measured covariates. However, it does not account
for unmeasured confounders, which may bias results
in the presence of hidden variation.

Methods with confounder adjustment include:

* CoCoA-diff (R package mmutilR 1.0.5) (6): De-
signed for individual-level case-control studies, CoCoA-
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diff prioritizes disease genes by adjusting for confounders 775

estimated from parametric models. After adjusting for
these confounders, the Wilcoxon rank-sum test is ap-
plied to the adjusted residuals, as recommended in the
original paper.

e CINEMA-OT (Python package cinemaot 0.0.3)
(11): CINEMA-OT separates confounding sources of
variation from perturbation effects using optimal trans-
port matching to estimate counterfactual cell pairs. Sim-
ilar to CoCoA-diff, the Wilcoxon rank-sum test is ap-
plied to the adjusted residuals of CINEMA-OT.

e RUV-III-NB (R package ruvIIInb 0.8.2.0)(13):
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This method normalizes gene expression data using pseudasr

replicates and a negative binomial model to remove un-
wanted variation induced by library size differences.
The Kruskal-Wallis test (equivalent to the Wilcoxon
test for two-group comparisons) is then applied to log-
percentile adjusted counts, as suggested by the authors.
However, RUV-III-NB does not directly adjust for li-
brary size and its ability to control FDR remains un-
clear, as it was not demonstrated in their experiments.

* RUV (R package ruv 0.9.7.1)(12): RUVris used
to estimate unmeasured confounders, which are then
incorporated into DESeq?2 for statistical inference based
on both observed and estimated covariates. Before run-
ning RUV, we successively use the functions
calcNormFactors, estimateGLMCommonDisp,

estimateGLMTagwiseDisp,and glmFit of edgeR

package (4.0.16) (46) to extract residuals not explained
by observed covariates and treatments.

This comprehensive benchmarking enables a thorough eval-
uation of each method’s ability to address unmeasured con-
founder estimation and perform robust statistical inference in
simulated data settings.

Evaluation metrics. To compare the performance of different
methods, we use four evaluation metrics, focusing on two as-
pects: confounder estimation and biological signal preserva-
tion. DESeq2 and Wilcoxon are excluded from confounder
estimation evaluation as they do not estimate unmeasured
confounders or counterfactuals.

The performance of confounder estimation is assessed us-
ing two clustering-based metrics: Adjusted Rand Index (ARI)
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and Average Silhouette Width (ASW) (47). These metrics
evaluate the quality of mixing in response and confounder
spaces, respectively. Formally, measures the similarity be-
tween the clustering results based on the estimated control
responses Y (0) and the true cell-type labels of the same sam-
ples. It adjusts for similarities that occur by chance:

3 () ~ 2 (5) 5 (9))/(5)

B (%) + 3, ()1 =1 (%) 3, (D ()

where n is the total number of samples, n;; is the number
of samples in both cluster ¢ and partition j, a; is the sum
over rows in the contingency table, and b; is the sum over
columns. Higher ARI values indicate better conservation of
cell identity based on estimated counterfactuals compared to
true labels. ARI ranges from -1 (complete disagreement) to
1 (perfect agreement), with O indicating random clustering.
On the other hand, ASW quantifies how well each sample

fits within its assigned cluster compared to other clusters. It
is defined as:

ARI =

psw= Lo _UD—al)

n “— max{a(i),b(i)} ’

i=
where (%) is the average dissimilarity of sample i to all other
samples within its cluster, and b(¢) is the average dissimilar-
ity to samples in the nearest neighboring cluster. ASW val-
ues range from -1 to 1, with higher values indicating better-
defined clusters (47). For both metrics, median scores are
scaled between 0 and 1 across methods within each simula-
tion setup. For these two metrics, we use the implementations
from the scib (1.1.5) package (47).

To evaluate biological signal preservation, we use False
Positive Rate (FPR) and True Positive Rate (TPR), which are
standard metrics derived from confusion matrices: PR quan-
tifies the proportion of false positives among all true nega-

tives:
FP

- FP+TN’

where FP and TN are false positives and true negatives, re-
spectively. A lower FPR indicates fewer false discoveries rel-
ative to true negatives. Also known as sensitivity or recall,
TPR measures the proportion of true positives among all ac-
tual positives:

FPR

TP

- TP+FN’

where TP and FN are true positives and false negatives, re-
spectively. A higher TPR indicates better detection of true
signals. These metrics provide complementary insights: FPR
evaluates specificity by penalizing false discoveries, while
TPR assesses sensitivity by rewarding correct detections. To-
gether, they measure how well a method balances identifying
true signals while avoiding false discoveries.

TPR

Single-cell Perturb-Seq dataset

We utilize the Perturb-Seq dataset from (17), which enables
high-resolution transcriptomic profiling of genetic perturba-
tions in excitatory neurons. This scalable platform system-
atically investigates gene functions across diverse cell types
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Single-nucleus Alzheimer’s disease dataset

and perturbation conditions, providing critical insights into
neurodevelopmental processes (17). We focus on excitatory
neurons of the dataset, a key population implicated in neu-
rodevelopmental disorders such as autism spectrum disorders
and neurodevelopmental delay, with perturbations targeting
genes involved in neuronal development and synaptic func-
tion (17).

For preprocessing, we filter out cells with perturbations
measured in fewer than 50 cells and genes expressed in fewer
than 50 cells, resulting in a dataset containing 2926 cells un-
der 30 perturbation conditions. The GFP (Green Fluorescent
Protein) condition is used as a negative control to benchmark
the effects of other perturbations by providing a baseline for
comparison in downstream analyses. After filtering lowly ex-
pressed genes with a maximum count of fewer than 10, we
retain 3221 genes.

The batch design is highly correlated with perturbation
conditions; therefore, it is not included as a covariate in the
model for testing. Instead, only the intercept is included as
a covariate. For propensity score estimation, we incorporate
the logarithm of library sizes as an additional covariate to ac-
count for technical variability and use GLM as the propensity
score model.

Single-nucleus Alzheimer’s disease dataset

This study integrates data from three single-nucleus RNA
sequencing (snRNA-seq) datasets to investigate Alzheimer’s
disease (AD): the ROSMAP-AD dataset (35) and two datasets
from the Seattle Alzheimer’s Disease Brain Cell Atlas (SEA-
AD) consortium (36), covering the middle temporal gyrus
(MTG) and prefrontal cortex (PFC). These datasets provide
complementary insights into AD pathology across different
brain regions and donor cohorts.

The ROSMAP-AD dataset is derived from a single-nucleus
transcriptomic atlas of the aged human prefrontal cortex, in-
cluding 2.3 million cells from postmortem brain samples of
427 individuals with varying degrees of AD pathology and
cognitive impairment (35). To ensure a balanced representa-
tion across subjects, we perform stratified down-sampling of
300 cells per subject, focusing on excitatory neurons while
excluding two rare subtypes (‘Exc RELN CHD7’ and ‘Exc
NRGN’). This preprocessing results in a dataset with 124997
cells and 33538 genes.

Next, we create pseudo-bulk gene expression profiles by
aggregating gene expression counts across cells for each sub-
ject. Genes expressed in fewer than 10 subjects are filtered
out, resulting in a final dataset of 427 samples and 26,106

genes. Binary treatment is defined based on the variable ‘age _firstzad_dx’,
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which approximates the “age at the time of onset of Alzheimer’s o1

dementia.” Covariates included in the analysis are ‘msex’ (bi-
ological sex), ‘pmi’ (postmortem interval), and ‘age_death’
(age at death). Missing values for ‘pmi’ are imputed using
the median of observed values.

The SEA-AD data are obtained from a multimodal cell
atlas of AD developed by the Seattle Alzheimer’s Disease
Brain Cell Atlas (SEA-AD) consortium (36). This resource
includes snRNA-seq datasets from two brain regions: the
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middle temporal gyrus (MTG) and prefrontal cortex (PFC),
covering 84 donors with varying AD pathologies.

For both MTG and PFC datasets, we perform stratified
down-sampling of 300 cells per subject, focusing on exci-
tatory neurons. Pseudo-bulk gene expression profiles are cre-
ated by aggregating counts across cells for each subject. Genes
expressed in fewer than 40 subjects are filtered out, result-
ing in final datasets with: 80 samples and 24,621 genes for
MTG and 80 samples and 25,361 genes for PFC. Covariates
included in the analysis are ‘sex’, ‘pmi’, and ‘Age_at_death’.
These variables account for biological and technical variabil-
ity across donors.

To enable comparative analyses across the three datasets
(ROSMAP-AD, SEA-AD MTG, and SEA-AD PFC), we re-
strict the analysis to 15586 common genes that are expressed
in all three datasets. Genes with a maximum expression count
below 10 among subjects are excluded to ensure robust com-
parisons.

CODE AVAILABILITY

The code for reproducing the results in the paper and the causarray package
can be accessed at https://github.com/jaydul/causarray.

DATA AVAILABILITY

All datasets used in this paper are previously published and freely available, ex-
cept the metadata for donors from the ROSMAP cohort. The Perturb-seq dataset
is available through the Broad single cell portal as txt files. The gene expression
count matrices of ROSMAP-AD datasets (35) can be obtained from supplementary
website, which have been deidentified to protect confidentiality - the mapping to
ROSMAP IDs and complete metadata can be found on Synapse as Seurat objects
(rds files). The SEA-AD datasets of nuclei-by-gene matrices with counts and nor-
malized expression values from the snRNA-seq assay (36) are available through
the Open Data Registry in an AWS bucket (sea-ad-single-cell-profiling) as AnnData
objects (h5ad files).
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Supplementary Note S1: Confounder estimation

Comparison with reference-based confounder adjustment methods

Another approach to adjust for the unmeasured confounders is to utilize the information from negative control genes. This
includes scMerge (48), RUV-III-NB (13) and RUVSeq (12) etc. These methods require users to specify a set of negative
control genes, such as housekeeping genes, which are assumed to be solely due to unwanted variation between the two cells.
The approach necessitates strong prior knowledge to accurately identify negative control genes, which may not always be
available, especially in less well-characterized biological systems. This reliance on prior knowledge can limit the applicability
of the method in novel or poorly understood contexts.

Algorithm

To estimate the unmeasured confounders, we employ an improved version of GCATE (18). Suppose (X;, A;,Y;) fori=1,...,n
are n independently and identically distributed samples coming from the same distribution as (X, 4,Y) € R x R® x RP,
Here, A consists of a treatments and can be both continuous and discrete for the purpose of confounder estimation. Let
X e R"*?4 A € R"*2Y € R™*P denote the design matrix, treatment matrix and gene expression matrix, respectively. To
account for different library sizes, we model the mean of the size-normalized counts

}/’LH
Hij =
i 3i7

which is assumed to follow a negative binomial distribution. Technically, p;;’s should be non-negative integers; however, the
likelihood-based approaches work seamlessly even when they are non-negative real numbers. Here s; is the size factor of cell
1, which will be specified later. We assume the conditional mean is characterized by a generalized linear model

log pij ~ Ai + Xi + Ui,

and its dispersion parameter ¢ is predetermined.
The adjusted expression ;5 of the ith observation and the jth gene has the density:

P(pij | 0i5) = h(piz) exp (nij0ij — A0ij))
where 0;; is the natural parameter. In matrix form, the natural parameters decompose as
©=XB"+UT",

where X = [X,A] € Rx(d+a) B ¢ RpX(d+a) 7 € R"*" and T € RPX" are unknown. Note that fi;’s are condition-
ally independent given the natural parameter ®. With this notation, the procedure of unmeasured confounder estimation is
summarized in Algorithm S1, and the details of the method are described below.

Estimation of size factors. We follow the procedure in (26) to compute the size factors s; fori =1,...,n. We start by calculating

the geometric mean for each gene j:
4 = exp <Z¢10g(Yz'j) 1{Ys; > 0}> .
2. 1{Yi; > 0}
Next, for each sample 7, compute the initial size factors:

d; = exp <j:1e/gi§61{10g(yij) - IOg(gj)}) :

Finally, we normalize these size factors to have a geometric mean of 1 across all samples:
d;

(IT; da)*/m

The size factors can then be used to normalize gene expression data, adjusting for differences in sequencing depth and other sys-

tematic biases across samples. The normalization ensures that observed differences in expression levels reflect true biological
variation rather than technical artifacts.

(81

S; =
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Algorithm

Algorithm S1 Unmeasured confounder estimation

Input: A data matrix Y € R"*P, a design matrix X = [X,A] € R”X(‘““), a natural number r > 1 (the number of latent
factors), a constant C' = 2 x 103 for the norm constraint

1: (Estimation of size factors) Compute s € R" according to Eq. (S1).

2: (Estimation of dispersion parameters) Compute ¢ € RP according to Eq. (S2).

3: (Estlmatlon of marginal effects F' and uncorrelated latent components Wl"T) Solve 0pt1mlzat10n problem Eq. (S3) to
obtain WOI‘(—']— and the initial estimate of the natural parameter matrix @0 XFT+ Wo 1"—r by alternative maximization:

F.W,,Ty € argmin LIXFT+wWrT)
FeRpx(dta) WeRnXr T eRPXT (S3)
subjectto XF'+WT ' e BLP, PxW =0.
4: (Estimation of latent coefficients T') Set W := /nQXY/2 and T' := VPVEL/2, where Wol| = /npQEV T s the

condensed SVD with Q € R"*", X e R™*", V € RP*", o
5: (Estimation of direct effects B and latent factors U) Solve optimization problem Eq. (S4) to obtain (B,U):

P
B,U = argmin E(XBT—l-Ul"T)-I-Z/\jHB.jHl
BeRpx(d+a) yeRpXxr =1 (S4)

subject to XB'T+UT" € B&P, PxB=0.

Output: Return the estimated confounders U.

Estimation of dispersion parameters. To estimate the dispersion parameter, we first fit generalized linear models (GLMs) on
the data and obtain the estimated mean expression of gene j, denoted as U; for j = 1,...,p. Note that when p;; comes from a
Negative Binomial distribution, its variance is given by

Var(pij | 0:5) = v(1+ayv),

where v =E[j;; | 0;5] is the conditional mean while «; is the dispersion parameter of the NB1 form. In the form of exponential
family parameterized by the parameter ¢;, a; is the reciprocal of ¢;, namely, a; = 1/¢;. By methods of moments, we can

solve the following equation to obtain an estimator qASj for ¢;:

1 n
EZ@M ~7;)? = (1+a;).

i=1

Finally, we clip &; to be in [1072,102] and set QAﬁj =1/a;. The estimated dispersion parameter has a close-form expression:

72
¢; = min { max J —,0.01 7,100 p. (S2)
’ i (i —75)? =5

Estimation of marginal effects by joint likelihood estimation. The negative log-likelihood function of the data is given by

L(®) = £(B,U,T) ZZ(”U 1 — A(05;) +log (“ij+7571)>.

i=1j=1 Hij

Although this is a nonconvex optimization problem, an alternative descent algorithm as in (18) can be employed to solve it
efficiently. By rewriting ©® = XBT4+2TT as©®=XFT+WT T with P e W =0, we can disentangle the marginal effects
and the uncorrelated latent components. This is correspond to step 3 of Algorithm S1. Each entry of the estimated natural
parameter matrix is constrained within the Euclidean ball B¢ with radius C' (C' = 2 x 103 by default).

Before alternative maximization, we compute deviance residuals R from the NB GLM fits with offsets log s and dispersion
parameters ¢, and initialize the uncorrelated confounders by W = 73}( Upgr where Ug € R™*" contains the first 7 left singular
vectors of R. Here, the projection P)Jg ensures that W is uncorrelated with X. Then, we initialize the marginal effects F' and

latent coefficient I' by solving GLMs with covariates [)7 , W]. In particular, when the intercept is included in the covariates,
the initial value of W also has zero means per column.
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Estimation of latent coefficients. Because the (uncorrelated) latent factors are identifiable only up to scaling and rotations, we
rescle the estimate at step 4 of Algorithm S1. This ensures the eigenvalues of W and T' have the same order, making the
alternative optimization more stable.

Estimation of confounding effects by adaptive penalization. The last step is to jointly recover the direct effects and the unmea-
sured confounders. This is done by imposing orthogonality between B and T, as well as imposing sparsity on B. The former
ensures the gene-wise effects of the observed covariates and the unmeasured confounders are uncorrelated, while the latter aims
to reveal signals from noisy measurements.

The direct effect B is initialized as P%-I? Then, Initialize Z and T using the SVD of the matrix X ﬁTPf + ﬁ\/f‘T =

U'SV'T. Let Z=(U'Y"/?), and T = (V'X1/2),, be the initialized values.
To account for different scales of the effects induced by different treatment conditions, we propose to use the adaptive
lasso to induce sparsity of effects from multiple treatments. More specifically, the regularization parameters are set as \; =

A/||(P%ﬁ)J||1 for j =1,...,p in optimization problem S4.
Because of regularization, the estimate B is typically biased towards zero, so we don’t use it for downstream analysis. It

is possible to perform inference with additional debiasing procedure (18). However, we use a more flexible semiparametric
inference method, as described below.

Determine the number of latent factors r

To determine the number of unmeasured confounders r, one can use the joint-likelihood-based information criterion (JIC) (18).
The JIC value is the sum of deviance and a penalty on model complexity:

d+a—+r)log(nA
JIC(® (T) ZZZIng ,u”|9 )+cnc-( nz\pg( p)7
i=1j5=1

where ©(") is the estimated natural parameter matrix with  unmeasured confounders and d + a observed covariates, and
cyic > 0 is a universal constant set to be 1 by default.
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Target estimands

Supplementary Note S2: Doubly robust inference

Target estimands

For semiparametric inference, a target estimand is a distributional functional of the observed random variables. For example,
we can consider the average treatment effects (ATE), the standardized average treatment effect (SATE), the average treatment
effect in levels or fold change (FC), and the log fold change (LFC). Below, we define these estimands:

* ATE: 7)TF = E[Y;(1) - Y;(0)].

* SATE: 7)ATE = E[Y;(1) - ¥;(0)]//Var(Y;(0)).
* ATE in levels: 7' = E[Y;(1) — Y;(0)]/E[Y;(0)].
* LEC: 7}FC = log(E[Y; (1)]/E[Y;(0))]).

Here, we use Y; to denote the random variable of the jth outcome and (Y;(0),Y;(1)) to denote its potential outcomes. Next,
we present the corresponding influence functions under the identification assumptions, Assumptions 1-3. Before we present
the influence functions, we introduce the uncentered influence function for E[Y;(a)] and E[Y;(0)2]:

1{A=a}
o (W)

1{A =0}
mo(W)

¢*ja(0;7ra7/1'ja) = (Y]'_M]'(l(W))""/lja(W)v a=0,1

52050, p12) = (Y7 = g2 (W) + pja (W),
where (1o(W) =E[Y; | W,A=a] fora =0,1 and p;2(W) = IE[Y]2 | W, A = 0]. Note that the (centered) influence function
of E[Y (a)] is given by ¢4 (O;7q, ptja) — E[Yj(a)]. It follows that

ATE(O ) = ¢j1—¢j0—TJATE.

SATE ;

The efficient centered influence function of 7; is given by

b1 —djo __sare [ 92 T E[Y;(0)?] — 2E[Y;(0)]450

SATE( —r
VIy;(0)] 2V[Y;(0)]

O;m,p5) =

See for example, Kennedy et al. (49, Equation (6)) and Du et al. (7, Equation (4.3)). Similarly, the efficient influence function
of TJF C is given by

¢j1 _d)]() ]FCgbjo
E[Y;(0)] E[Y;(0)]

LFC(O T u]) ¢J1 (z)JO

E[y;(1)]  E[Y;(0)]

(O ™) =

In the current paper, we restrict our focus to LFC; however, our implementation also allows the computation and inference using
other estimands listed above. When computing the LFCs, we use the size-normalized counts Y;; /s; adjusted by the size factors
s; in place of the raw count Y;;. This is akin to taking a weighted average of the sample to estimate ATE (and, subsequently,
LFC). Otherwise, the effect will be driven by cells with large library sizes.

CATE and VTE
Under standard identification assumptions of consistency, conditional exchangeability, and positivity as in Assumptions 1-3,
the conditional average treatment effect (CATE) is identified by 7;(w) = 1 (w) — pjo(w). This also applies to conditional
log-fold change.

When one is only interested in the conditional effects in a subset of variable S C [dyw + a], the DR-learner readily accom-
modates runtime confounding through the decomposition 7s(w) = E[¢(O) | Ws = wg]. This decomposition implies that one
may estimate 7s(w) by regressing ¢(O) on W, i.e. modifying the final regression step of the DR-learner.
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1242 Multiple testing adjustment by multiplier bootstrap

Algorithm S2 Multiple testing on standardized treatment effects

Input: The estimated influence function values 7);;, the estimated variance ’0\]2- fori=1,...,nand j = 1,...,p. The FDP
exceedance threshold ¢, the FDP exceedance probability «, and the number of bootstrap samples B. The threshold ¢ to
exclude genes with small variation.

1: Initialize the iteration number ¢ = 1, the candidate set A; = {j € [p] | EJQ- > ¢}, the set of discoveries V; = @, and the

maximal statistic of M; = max;e4, |t;].

2: while not converge do
Let D,,, = diag((0;);c.4,) be the diagonal matrix of the estimated standard deviations and 7;; = (7i;)jec.4, be the
vector of estimated influence function values at iteration ¢.

4:  Draw multiplier bootstrap samples géb) = (\/ﬁDng)_IZ?ZIe:EZ)ﬁM, where 522)’5 are independent samples from
N(0,1) fori=1,...,nandb=1,...,B.

s:  Compute the maximal statistic My, = maxc 4, |t;].

6:  Estimate the upper a-quantile of M, under H ée) : T;‘ =0,VjeAsby

qe(@) :inf{x

B

1 b

52Ul >||oo<x}>1—a}
b=1

Set jy = argmax¢ 4, |t;| and Apy 1 = Ap\ {Je}-
if My > qy(a) then

: Set Ve ZVZU{jg}.

10:  else

11: Declare the standardized treatment effects in .4, are not significant stop the step-down process.
12:  end if
130 L1041

14: end while
15: Augmentation: Set V' to be the union of V; and the ||V,|-¢/(1 —c)] elements from A, with largest magnitudes of ;.
Output: The set of discoveries V.

1243
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Bulk expression simulation details

Supplementary Note S3: Data simulation and analysis

Bulk expression simulation details

The bulk expression data are generated using a Poisson distribution with a zero-inflation component. The setup involves
generating a latent signal matrix influenced by random noise and specific parameters. The data generation process is described
in Algorithm S3 in detail. For experimental results in Fig. 2, we set d = 2 and r* = 1, and vary n € {100,200,300}. For
causarray, RUV, and RUV-III-NB, we provide the number of latent factors in r € {2,4,6}. Because the simulated data consists
of 3 cell types, which may be explained with 3 additional degrees of freedom, the best possible choice of the number of latent
factors would be r = 4.

Algorithm S3 Data generation process for pseudo-bulk gene expressions.

Input: Number of subjects n, number of covariates d, number of latent factors 7o, number of cells per subject m = 10, number
of genes p = 2000, number of significant genes s = 100, and zero-inflation probability ) = 0.1.
1: (Signals) The p-dimensional signal is derived from multiplying the signal strength by a Beta distributed vector, modified
by a random sign flip:

Bj ~ 0.5 x Beta(1,0.1) x (2 x Bernoulli(0.5) — 1), j=1,...,s,

and 8 =0forj=s+1,...,p

2: (Cell types) The 3 cell types are generated with means {—0.5,0,0.5} and standard deviations drawn from Uniform(0.5,1).
For n subjects, the cell type assignment is randomly sampled from Categorical(3) and the cell-type specific means and
scales are stored as n-dimensional vectors i and o.

3: (Covariates) Sample d observed covariates W.; ~ 0.50¢ X N (pher, 1) for j =1,...,d, and unobserved covariates W. j~

0.250¢ X Ny (pet, 1) for j=d+1,....d+ro.

(Treatments) Sample A ~ Bernoulli(Logistic(W ) where at ~ Ny (044 o, (4(d+70)) /%1411y ).-

(Coefficient matrix) Sample bo; ~ Beta(2,1) and B.; ~ Ny (0gry, (4(d+70)) "/ 2144,,) forj=1,....p

(Natural parameters) Let @ = lbg)r +WBT +ABT.

(Single-cell observations) Let Y*¢ € R™*P*"™ with Y% ~ Bernoulli((1 —1)) X 1,,x;) x Poisson(exp(®)) for { =1,...,m

: (Bulk observations) Let Y € R™*P with Y = >_," , YSC

Output Covariates W, treatment A, single-cell gene expression Y *¢, and bulk gene expression Y.

[ AR

Single-cell expression simulation details

The single-cell expression data are generated by Splatter (25). Splatter explicitly models the hierarchical Gamma-Poisson pro-
cesses that give rise to data observed in scRNA-seq experiments and can model the multiple-faceted variability. The data is
generated from splatSimulate function from Splatter (1.26.0) package (25). When calling this function, the treatment ef-
fects are simulated with the parameters: group.prob = ¢ (0.5, 0.5), method = "groups", de.prob=0.05,
de.facLoc=1., de.facScale=0.5, de.downProb=0.5; the dropout effects are simulated with the parameters:
dropout.type="experiment", dropout.mid=20, dropout.shape=0.001; the batch effects are simulated
with the parameters: batch.facLoc=noise, batch.facScale=0.5; while all the other parameters are the same as
returned by the function newSplatParams. For experimental results in Fig. S1, we generate d = 1 covariates and r = 4
unmeasured confounders. We first generate (d +r + 1) /2 batches with equal sample sizes, which account for d + r degrees of
freedom. To simulate varying confounding levels, we set noise in {0.1,0.2,0.3}.
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126 Simulation
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Fig. S1. Benchmarking of causarray against other methods for single-cell differential expression testing on synthetic single-
cell expression data under unmeasured confounders. a, Bar plots and box plots of different validation metrics for causarray and

other methods with » = 4 latent factors and a moderate confounding level.

Bar plots (ARI, adjusted Rand index, and ASW, average

silhouette width) indicate the median performance of confounder estimation. Box plots (FPR, false positive rate, and TPR, true positive
rate) indicate the performance of biological signal preservation. The top and bottom hinges represent the top and bottom quartiles, and
whiskers extend from the hinge to the largest or smallest value no further than 1.5 times the interquartile range from the hinge. The
median is used as the center. b, Bar plots and box plots of different validation metrics for causarray and other methods with varying
confounding effects. ¢, Bar plots and box plots of different validation metrics for RUV, RUV-III-NB, and causarray, with varying numbers
of latent factors.
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Perturb-seq data

Perturb-seq data
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Fig. S2. Additional results on the Perturb-seq dataset.
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a, Barplot of the number of cells in each perturbation. b, Heatmap of

the number of cells in each batch and perturbation. The batch design and the perturbation assignment of the Perturb-seq dataset are
highly correlated. ¢, Clustermaps of GO terms enriched in discoveries (FDR< 0.1) from causarray and RUV, respectively, where the
common GO terms are highlighted in blue. Only the top 40 GO terms that have the most occurrences in all perturbations are displayed.
d, Barplot of GO terms enriched in discoveries under Mil1 perturbation from RUV.
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Alzheimer’s data

Fig. S3. Extra experimental results in AD datasets. a, Histogram of estimated propensity score in three AD datasets. b, Estimated
effect sizes of DE genes (FDR < 0.001) in SEA-AD datasets. The black dashed line represents the fitted linear regression model, and
the red dotted line represents the line y = x. ¢, Top gene ontology terms of the shared and distinct discoveries by causarray and RUV.
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